EDC-16C9/C39

Written by: Someone Date: 2014 Thanks to: A lot of helpful forum members! For more info: **www.ecuconnections.com** Revision: 1.4

Index:

Introduction:

The EDC16C9 and EDC16C39 are used in Opel Vectra, Fiat Chroma, Alfa 156, SAAB 9000 and some other cars that use 1.9cdti engine. The system looks a lot like the EDC15 system, but the EDC16 system is based on Torque (Nm) instead of Injected Quantity. There are a few more differences that are explained in this document. For the examples in this document I used the pro tuned Opel Astra 1.9 cdti 16v 150bhp file. The pictures show tuned file and difference from original by Delta or %.

I chose to use different values in my remap, hope my explanation will not be confusing for you. Here you can find the pro tuned file:

http://www.ecuconnections.com/forum/viewtopic.php?f=152&t=15660&p=81062&hilit=pro+astra+150#p81062 There are some mistakes in map-pack...

This Guide has no intention to show how to save money by DIY remap as it is a Mission Impossible. This Guide intends to brief you about control and operation of the 1.9 DTH engines so can enjoy playing with it. Be aware that this could be an expensive hobby. Have fun.

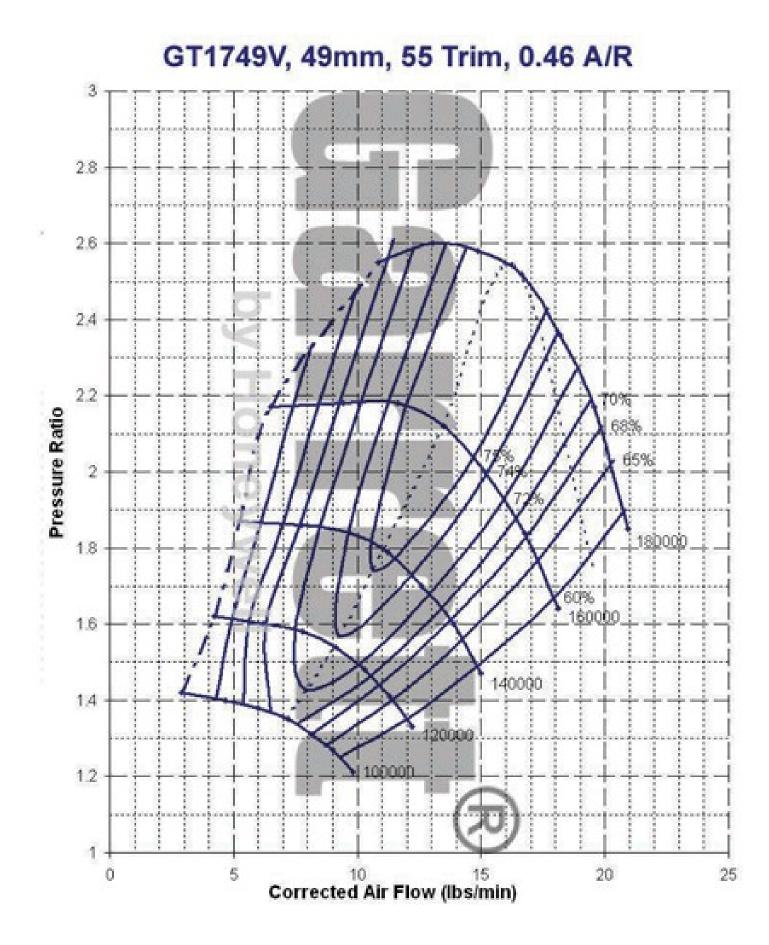
Car data

Z19DTH - 1.9CDTI 150BHP

Engine Specification Engine, location: Front, transverse in front of axle 17° 24' forward inclined Cooling system: Liquid, sealed circuit **Cylinders**, number: 4 **Bore (mm)** 82 Stroke (mm): 90.4 Displacement (cc): 1910 **Compression ratio:** 17.5: 1 Engine, type: In line; 5 main bearings Cylinder block/ head, material: Cast iron/ aluminium Camshaft (s), location: 2 overhead (DOHC), driven by toothed belt Valve train: Indirect, roller cam followers Valve, arrangement: In line; 4 per cylinder Valve, Adjustment: Automatic - hydraulic Fuel system: Diesel direct injection, common rail Ignition system: n/a **Fuel pump:** High pressure mechanic Emission control system: 2- way cat. conv. (oxidizing catalytic converter) exhaust gas recirculation DPF Output (kW/hp CEE at 1/min): 110/ 150 at 4000 Specific power (kW/l; hp/l): 57.6; 78.5 Max. torque (Nm at 1/min): 315 at 2000 Specific torque (Nm/litre): 164.9 Mean effective pressure at max. power/ max. torque (kPa): 1727.7/2073.4 Average piston speed (m/s): 12.1 Engine oil, capacity (l): 4.3 Cooling capacity (I): 7.5 Battery 12 V,

capacity (Ah): 70 Alternator 14.2 V, Capacity (W): 1420 Max. service interval: 20,000 miles or 1 year Emission compliance: Euro 4 Engine mass (kg): tba Charger system: Turbo with intercooler

Max. boost pressure (bar): tba



(min⁻¹)

Power Output (kW) Torque (Nm)

2009 Aisin Warner AF40-6 (M30	6) FWD & (MXE) AWD Transmission
Туре:	six speed front wheel drive, electonically controlled automatic tansmission with torque converter clutch
Maximum engine torque:	400 Nm (Gasoline), 450 Nm (Diesel)
Gear Ratios:	M36 & MXE
1st	4.15
2nd	2.37
3rd	1.56
4th	1.16
5th	0.86
6th	0.69
REV	3.39
F/D	2,561 / 2,666 / 2,774 / 2,839 / 2,955 / 3,075 / 3,200 / 3,329 / 3,464 / 3,640 / 3,750
Ratio spread	6,05:1
Maximum shift speed:	7000 rpm

Min input speed:	650 rpm			
Maximum validated gross vehicle	2355 kg (MY09 Opel Insignia HB AF40 AWD A28NET)			
weight:	2355 kg (MY09 Oper Insignia HB AF40 AWD A28NET)			
Shifting mechanism:	Integrated position sensor with TCM			
Shifting positions:	P,R,N,D (by cable) & Tiptronic (by CAN)			
Case material:	Die cast aluminum			
Center distance:	197 mm			
Overall length:	358 mm			
Shift pattern:	Pulse width modulated solenoid control			
Shift quality:	Variable bleed solenoid			
Torque converter clutch:	Pulse width modulated solenoid control			
Available control features:	Eco Mode			
	Selective Sport Mode			
	Drivers Adaptive (Fuzzy)			
	Manual Mode (Tiptronic)			
	Up Hill Control			
	Down Hill Control			
	Torque Limitation (axle shaft protection)			
	Fast Acceleration OFF			
	Fast Acceleration ON			
	Shift by Temperature			
	Brake Assist			
	Cornering Control			
	Pass-by Noise Test Function			
	Differential Protection			
	Warm-up Shift Pattern (WUSP)			
	Neutral Control			
	L-up Slip Control (drive & coast)			
	Tip Auto Down			
	Tip Auto Up			
	Improved Downshift Protection			
	Up Shift Prevention			
	Low m Conrol			
	Highest Gear in Limp Home Gear Stabilization			
EOBD II, OBD				
Converter size:	241 & 260			
k-Factor:	142k - 225k			
Torque ratio:	2,0 - 2,32			
Fluid type	AW-1 (low friction), lifetime fill			
Transmission weight (dry):	87 kg			
Fluid capacity	6,96 kg (incl. cooler)			
Pressure taps available:	Access to all clutches & brakes possible			
Assmbly site:	Anjo City, Japan			
Applications:	Opel Astra, Zafira, Vectra			
-Philannana.	Saab 9-3, Cadillac BLS			

Fuel related maps

1. Drivers wish Maps:

General:

This map shows the required torque based on the RPM and the Throttle position. The output of this map is Torque in Nm. There may be more drivers wish maps, in the file I used for this guide there were 3 drivers wish maps.

Properties of	×	Propertie	es of		×
Map X-Axis Y-Axis Comment		Мар	X-Axis Y-Axis	s Comment	
Description: Torque		Descr	ription:	Throttle	
Unit: NM Id:		Unit:		%	
Name: Drivers Wish		Data	source:	Eprom	•
Start address: C10BC From he Column x rows: 8 x 13	exdumpcursor	Start a	address:	C10AC From hexdu	umpcursor
Values: 16 Bit (HiLo)	•	Value	es:	16 Bit (HiLo) 👻	Skip bytes: 0
Number format: Decimal (Base 1	10 System) 🔻	Numb	per format:	Decimal (Base 10 S	System) 🔻
Sign Original values	Difference	Signa	ature byte:	Sign	
Organization: Twodimensional					
Right side: Bar display Value range: 0 - 6553	→ 36 Auto				
✓ Factor, offset: Value = 0.100000	* Eprom + 0.000000		or, offset: eciprocal:	Value=	+ 0.000000
Variable offset: (none)	•				
Precision: 0	Bar)°C 1 % (fix) ▼	Precis	sion:	1	Bar ℃ 1 % f6x) ▼
ОКС	Cancel Help			OK Cano	cel Help

Properties of	×
Map X-Axis Y-Ax	dis Comment
Description:	RPM
Unit:	1/min
Data source:	Eprom 👻
Start address:	C1092 From hexdumpcursor
Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) -
Signature byte:	Sign
Factor, offset:	Value= 1.000000 * Eprom + 0.000000
Precision:	0 ⁸ ar) [°] C 1 % (fáx) ▼
	OK Cancel Help

2. Torque limiter:

General:

This map limits the torque of the engine based on RPM and atmospheric pressure. The output of this map is also Torque in Nm. This is 2D map.

Properties of	×	F	Properties of	×
Map X-Axis Com	ment		Map X-Axis (Comment
Description:	Torque		Description:	RPM
Unit:	Nm ld:		Unit:	1/min
Name:	Torque Limiter		Data source:	Eprom 💌
Start address:	CBE2C From hexdumpcursor		Start address:	CBDFA From hexdumpcursor
Column x rows:	25 × 1			Mirror map
Values:	16 Bit (HiLo)		Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) 🔻		Number format:	Decimal (Base 10 System) 🔻
	Sign Difference			Sign
	Original values Percent		Signature byte:	
Organization:				
Right side:	Bar display 👻			
Value range:	0 - 65535 Auto			
✓ Factor, offset: ■ Reciprocal:	Value= 0.100000 * Eprom 1 + 0.000000		Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Variable offset:	(none)			
Precision:	0 Bar)℃ 1 % (fóx) ▼		Precision:	Bar)℃1 % fix) ▼
	OK Cancel Help			OK Cancel Help

3. Nm to IQ conversion map:

General:

This map is a calibration map. This map converts the requested Torque in Nm into IQ (injected quantity).

Properties of	×	Properties of
Map X-Axis Y-Ax	is Comment	Map X-Axis Y-Axis Comment
Description:		Description: Torque
Unit:	mm3/stk ld:	Unit: Nm
Name:	Nm to IQ conversion	Data source: Eprom 🕶
Start address:	CD922 From hexdumpcursor	Start address: CD902 From hexdumpcursor
Column x rows:	16 × 16	Mirror map
Values:	16 Bit (HiLo)	Values: ■ 16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) 🔻	Number format: Decimal (Base 10 System)
	Sign Difference	Sign
Organization:	Twodimensional	Signature byte:
Right side:	Bar display 🔻	
Value range:	0 - 65536 Auto	
V Factor, offset:	Value= 0.010000 * Eprom 1 + 0.000000	Factor, offset: Value= 0.100000 * Eprom Reciprocal: 1 0.000000
Variable offset:	(none)	
Precision:	Bar ℃ 1 % (fóx) ▼	Precision: 0 Bar °C 1 % (fóx) ▼
	OK Cancel Help	OK Cancel Help

Properties of	×
Map X-Axis Y-Axi	is Comment
Description:	RPM
Unit:	1/min
Data source:	Eprom 🔹
Start address:	CD8E2 From hexdumpcursor
	Mirror map
Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) 🔻
Signature byte:	Sign
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Precision:	0 [®] C 1 % (f(x) ▼
	OK Cancel Help

4. IQ limiter map:

General:

This is map for engine speed dependent quantity limitation.

Properties of	X	Properties of	X
Map Y-Axis X-Axi	is Comment	Map Y-Axis X-Ax	is Comment
Description:	injection mass	Description:	average engine speed
Unit:	mm^3/hub Id: EngPrt_qOvhtPrvNRng_	Unit:	rpm
Name:	map for engine speed dependent quantity limit	Data source:	Eprom 👻
Start address:	CC204 From hexdumpcursor	Start address:	CC1C4 From hexdumpcursor
Column x rows:	16 × 16		Mirror map
Values:	16 Bit (HiLo)	Values:	16 Bit (HiLo) Skip bytes: 0
Number format:	Decimal (Base 10 System)	Number format:	Decimal (Base 10 System) -
	Sign Difference		Sign
Organization:	<u>O</u> riginal values <u>Percent</u> <u>2D Inverse</u>	Signature byte:	
Right side:	Bar display		
Value range:	0 - 65535 Auto		
Factor, offset:	0.010000 * Eprom	Factor, offset:	1.000000 * Eprom
Reciprocal:	Value= + -0.000000	Reciprocal:	Value=+ -0.000000
Variable offset:	(none)		
Precision:	4 Bar ℃ 1 % f(x) ▼	Precision:	2 Bar ℃ 1 % f(x) ▼
	OK Cancel Help		OK Cancel Help
Properties of			
	mment		
Description: minim	um prevention factor calculated from terr		
Data source: Epror	m 🔹		
Start address: CC1E	F4 From hexdumpcursor		
Values: 16 Bit	t (HiLo) 🔻 Skip bytes: 0		
Number format: Decir			
Signature byte:	jri		
Factor, offset:	= 0.000122 * Eprom + -0.000000		
Reciprocal:	1		
Precision: 5	Bar °C 1 % f∞) ▼		
	OK Cancel Help		

5. Gear Dependent Torque Limiter

General:

From first to sixth gear and reverse, those map names speak for it. They look like that:

 $00002 \ 00635 \ 04000 \ 10000 \ 10000$

In Opel cars the data after 10000 are unused till the next 00002 then starts the next limiter 2x1.

Properties of	×	Properties of	×
Map X-Axis Com	nment	Map X-Axis Cor	nment
Description:	Gear Dependent Torque Limiter	Description:	RPM
Unit:	Nm ld:	Unit:	1/min
Name:	1st Gear	Data source:	Eprom 💌
Start address:	CE1EC From hexdumpcursor	Start address:	CE1E8 From hexdumpcursor
Column x rows:	2 × 1		Mirror map
Values:	16 Bit (HiLo) 🔹	Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) -	Number format:	Decimal (Base 10 System) -
	Sign Difference		Sign
	Original values Percent	Signature byte:	8813
Organization: Onedimensional			
Right side:	Bar display 🔻		
Value range:	3000 - 16000 Auto		
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000	Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Variable offset:	(none)		
Precision:	0 8ar ℃ 1 % fx) ▼	Precision:	0 [®] C 1 [∞] f(x) ▼
	OK Cancel Help		OK Cancel Help

Those maps could start also with value 3000 and depending of the gear have the final value either 1000, 2000, 3000, 4000, 5000, 6000 or 0. Axis has values 01200 01250 01500 01750 02000 02250....(RPMs)

6. IQ limit by Coolant Temperature

General:

This map limits IQ depending of Coolant Temperature.

Properties of	X		Properties of	×
Map X-Axis Y-Axi	is Comment		Map X-Axis Y-A	xis Comment
Description:			Description:	
Unit:	mg/s ld:		Unit:	ා 2
Name:	IQ Limit 118/132 Coolant temp		Data source:	Eprom 💌
Start address:	CC140 From hexdumpcursor		Start address:	CC124 From hexdumpcursor
Column x rows:	8 × 8			Mirror map
Values:	16 Bit (HiLo)		Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) 🔻		Number format:	Decimal (Base 10 System) -
	Sign <u>D</u> ifference			Sign
	Original values Percent		Signature byte:	
Organization:	Organization:			
Right side:	Bar display 🔻			
Value range:	0 - 65536 Auto			
Factor, offset:	Value= 0.010000 * Eprom 1 + 0.000000		Factor, offset:	Value= +273.1000(
Variable offset:	(none) 🔻			
Precision:	Bar)℃ 1 % f(x) ▼		Precision:	Bar °C 1 % ftxl ▼
	OK Cancel Help			OK Cancel Help

Properties of	×
Map X-Axis Y-Axi	s Comment
Description:	RPM
Unit:	1/min
Data source:	Eprom 🔹
Start address:	CC114 From hexdumpcursor
	Mirror map
Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) -
Signature byte:	Sign
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Precision:	0 Bar ℃ 1 % (f(x) ▼
	OK Cancel Help

7. IQ limit by Intake Fuel Temperature

General:

This map limits IQ depending of Intake Fuel Temperature.

Properties of	x	Properties of	×
Map X-Axis Y-A	xis Comment	Map X-Axis Y-A	Axis Comment
Description:		Description:	IAT
Unit:	mm3 ld:	Unit:	3°
Name:	IQ Limit -20/120 Fuel T	Data source:	Eprom 🔻 📖
Start address:	CF112 From hexdumpcursor	Start address:	CF0EE From hexdumpcursor
Column x rows:	8 × 8		Mirror map
Values:	16 Bit (HiLo) 🔹	Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) 💌	Number format:	Decimal (Base 10 System) -
Sign Difference			Sign
Original values Percent		Signature byte:	
Organization:	Twodimensional		
Right side:	Bar display 👻		
Value range:	0 - 65536 Auto		
Factor, offset: Reciprocal:	Value= 0.010000 * Eprom 1 + 0.000000	Factor, offset:	Value= 0.100000 * Eprom 1 + -273.10000
Variable offset:	(none) 🔻		
Precision:	Bar ℃ 1 % (f(x)) ▼	Precision:	0 Bar ℃ 1 % f6x) ▼
	OK Cancel Help		OK Cancel Help

Properties of	×
Map X-Axis Y-Axi	s Comment
Description:	RPM
Unit:	1/min
Data source:	Eprom -
Start address:	CF0DE From hexdumpcursor
Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) -
Signature byte:	Sign
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Precision:	0
	OK Cancel Help

8. IQ limit by RPM

General:

This map limits IQ depending of Intake Air Temperature.

Properties of	X	P	Properties of	×
Map X-Axis Y-Axi	is Comment		Map X-Axis Y-A	Axis Comment
Description:			Description:	RPM
Unit:	mm3/stk ld:		Unit:	1/min
Name:	IQ Limit by RPM		Data source:	Eprom 👻
Start address:	CF0C2 From hexdumpcursor		Start address:	CF0AA From hexdumpcursor
Column x rows:	12 × 1			Mirror map
Values:	16 Bit (HiLo) 🔻		Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) -		Number format:	Decimal (Base 10 System) -
	Sign Difference			Sign
	Original values		Signature byte:	7017
Organization:	Twodimensional			
Right side:	Bar display 🔻			
Value range:	0 - 65535 Auto			
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000		Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Variable offset:	(none) 🔹			
Precision:	0 Bar ℃ 1 % f(x) ▼		Precision:	0 8ar ℃ 1 % f(x) ▼
	OK Cancel Help			OK Cancel Help

9. Start Of Injection map(SOI/SOE):

General:

This map shows angle at which start injection against TDC. There is 10 maps, 5 of them are exactly the same and are used during DPF regeneration.

Start of Energising of Pilot Injections

The structure of SOE calculation is nearly identical between Pil1 and Pil2. The difference can be found in their base. Pil1is calculated relative to SOE of MI of the last injection cycle, while PIl2 is calculated relative to Pil1 of the same cycle. The calculation is based on some limits that must not be exceeded in a running system.

Pilot injections are always calculated relative to main injection, but their earliest SOE InjCrv_phiPiIMax_C is implicated relative to TDC (namely 30deg BTDC for our cars, and it's a map close after SOE).

Properties of	x	Properties of
Map X-Axis Y-A	xis Comment	Map X-Axis Y-Axis Comment
Description:	SOI	Description:
Unit:	degCA ld:	Unit: mm3/stk
Name:	Start of Injection 1	Data source: Eprom
Start address:	D0308 From hexdumpcursor	Start address: D02E8 From hexdumpcursor
Column x rows:	16 × 16	Mirror map
Values:	16 Bit (HiLo) 🔹	Values: T6 Bit (HiLo) Values: 0
Number format:	Decimal (Base 10 System)	Number format: Decimal (Base 10 System)
	✓ Sign Difference	Sign
	Original values Percent	Signature byte:
Organization:	Twodimensional	
Right side:	Bar display 🔻	
Value range:	0 - 65536 Auto	
Factor, offset:	Value= 0.023000 * Eprom 1 + 0.000000	Factor, offset: Value= 0.010000 * Eprom Reciprocal: Value= 1 + 0.000000
Variable offset:	(none) 🔻	
Precision:	Bar ℃ 1 1 % f(x) ▼	Precision: 1 Bar °C 1 % f(x) ▼
	OK Cancel Help	OK Cancel Help

Properties of	×
Map X-Axis Y-Ax	dis Comment
Description:	RPM
Unit:	1/min
Data source:	Eprom 👻
Start address:	D02C8 From hexdumpcursor
	Mirror map
Values:	16 Bit (HiLo)
Number format:	Decimal (Base 10 System) -
Signature byte:	Sign
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Precision:	0 [®] ar [°] C 1 % (f(x) ▼
	OK Cancel Help

10. Injector opening time (Duration map):

General:

This map is a calibration map. This map shows how much rotation it takes to achieve the required amount of fuel injected. The output of this map is in engine degrees.

Properties of	×	Ĩ	Properties of	x
Map X-Axis Y-A	Axis Comment		Map X-Axis Y-A	xis Comment
Description:	IQ		Description:	Duration
Unit:	mm3/st		Unit:	micro sec Id:
Data source:	Eprom 👻 🛄		Name:	Injectors Opening Time
Start address:	DB5CA From hexdumpcursor		Start address:	DB5F2 From hexdumpcursor
	Mirror map		Column x rows:	20 × 20
Values:	■ The second se		Values:	16 Bit (HiLo)
Number format:	Decimal (Base 10 System) -		Number format:	Decimal (Base 10 System) -
	Sign			Sign Difference
Signature byte:				Original values Percent
			Organization:	Twodimensional
			Right side:	Bar display 🔹
			Value range:	0 - 65536 Auto
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000		Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
			Variable offset:	(none)
Precision:	0 Bar ℃ 1 % (fix) ▼		Precision:	Bar °C 1 % ftx) ▼
	OK Cancel Help			OK Cancel Help

Properties of	×
Map X-Axis Y-Axi	s Comment
Description:	Rail Pressure
Unit:	Bar
Data source:	Eprom
Start address:	DB5A2 From hexdumpcursor
	Mirror map
Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) -
Signature byte:	Sign
Factor, offset:	Value= 0.100000 * Eprom 1 + 0.000000
Precision:	0 8ar ℃ 1 % (f(x) ▼
	OK Cancel Help

11. CRS Rail Pressure:

General:

This map shows how should be the rail pressure at certain RPM and IQ. There is 2 maps, 1st is used during DPF regeneration, 2nd during normal operation.

Properties of	×	ſ	Properties of	×
Map X-Axis Y-A	xis Comment		Map X-Axis Y-Ax	xis Comment
Description:	IQ		Description:	Rail Pressure
Unit:	mm3/stroke		Unit:	Bar Id:
Data source:	Eprom 🔹		Name:	Rail Pressure normal
Start address:	E4970 From hexdumpcursor		Start address:	E4990 From hexdumpcursor
	Mirror map		Column x rows:	16 × 16
Values:	16 Bit (HiLo) ▼ Skip bytes: 0		Values:	16 Bit (HiLo) 🔹
Number format:	Decimal (Base 10 System) 💌		Number format:	Decimal (Base 10 System) 💌
	Sign			Sign Difference
Signature byte:				Original values
		l	Organization:	Twodimensional
			Right side:	Bar display 💌
			Value range:	0 - 65536 Auto
Factor, offset:	Value= 0.010000 * Eprom 1 + 0.000000		V Factor, offset:	Value= 0.100000 * Eprom 1 + 0.000000
			Variable offset:	(none) 💌
Precision:	0 Bar ℃ 1 % f(x) ▼		Precision:	0 Bar °C 1 % ffxl ▼
	OK Cancel Help			OK Cancel Help

Properties of	×
Map X-Axis Y-Av	xis Comment
Description:	RPM
Unit:	1/min
Data source:	Eprom 🔹
Start address:	E4950 From hexdumpcursor
	Mirror map
Values:	16 Bit (HiLo)
Number format:	Decimal (Base 10 System) -
Signature byte:	Sign
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Precision:	0 [∞] ¹ ⁽
	OK Cancel Help

12. SV Rail Pressure:

General:

This value limits the absolute common rail pressure. This value can be found behind the rail pressure map. There is 4 maps.

Properties of	×
Map Comment	
Description:	SVFP
Unit:	bar Id:
Name:	SVFPL
Start address:	E3F0A From hexdumpcursor
Column x rows:	1 × 1
Values:	16 Bit (HiLo) 🔹
Number format:	Decimal (Base 10 System) -
	Sign Difference
	Original values Percent
Organization:	Single value 🔻
Right side:	Bar display 👻
Value range:	3000 - 16000 Auto
✓ Factor, offset: ■ Reciprocal:	Value= 1.000000 * Eprom 1 + 0.000000
Variable offset:	(none) 💌
Precision:	0 Bar ℃ 1 % fóx) ▼
	OK Cancel Help

Air related maps

13. EGR vs MAF map:

General:

This map regulates the Exhaust gas recirculation valve to limit intake MAF.

Properties of	×	Properties of	X
Map X-Axis Y-Axis Con	mment	Map X-Axis	Y-Axis Comment
Description: MAF		Description:	
Unit: mg/str	roke ld:	Unit:	mm3/stroke
Name: EGR v	vs MAF	Data source:	Eprom 💌 📖
Start address: C2B98 Column x rows: 16	8 From hexdumpcursor x 14	Start address:	C2B78 From hexdumpcursor
Values: 16 Bit	t (HiLo) 🔹	Values:	16 Bit (HiLo)
Number format: Decim	nal (Base 10 System) 🔻	Number format:	Decimal (Base 10 System) -
	n <u>D</u> ifference ginal values <u>P</u> ercent dimensional •	Signature byte:	Sign
Right side: Bar dis Value range: 0	- 65536 Auto		
✓ Factor, offset: Reciprocal: Value=	= 0.100000 * Eprom 1 + 0.000000	Factor, offset:	Value= 0.010000 * Eprom 1 + 0.000000
Variable offset: (none)	a) 🔹		
Precision: 0	Bar ℃ 1 % f(x) ▼	Precision:	Bar)℃1 0 % fíx) ▼
	OK Cancel Help		OK Cancel Help

Properties of	X
Map X-Axis Y-Ax	xis Comment
Description:	RPM
Unit:	1/min
Data source:	Eprom 💌
Start address:	C2B5C From hexdumpcursor
Values:	16 Bit (HiLo)
Number format:	Decimal (Base 10 System)
Signature byte:	Sign
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Precision:	0 [®] ar [®] C 1 % (f(x) ▼
	OK Cancel Help

14. EGR vs Temp map (Setpoint generation):

General:

There is several maps for EGR ambient condition correction.

For stationary reference, first the underlying AirCtl_mDesBase_mp from the target map AirCtl_mDesBase_MAP in function of the speed and the unlimited Eng_nAvrg injection quantity InjCtl_qRaw formed. Underlying this is a function of EGR and-balance, atmospheric pressure and temperature corrected by the cooling water temperature. Each of the corrections than the cooling water temperature correction can additively or multiplicative done.

Depending on the intake air temperature is determined with the IATSCD_tAir characteristic AirCtl_ATCor_CUR a factor with one of the characteristic field of the speed AirCtl_NQATCor_MAP Eng_nAvrg and the injection quantity InjCtl_qRaw dependent factor is multiplied and the results Ansauglufttemperaturkorrekturwert. The correction value is dependent of the DAMOS switch AirCtl_swtATCorVal_C considered additive or multiplicative. Thus we obtain the desired value AirCtl_mDesVal_3_mp. A change of the switch requires a new AirCtl_swtATCorVal_C DAMOS run because, the conversions change.

Properties of	×	Prope	rties of		x
Map X-Axis Y-Ax	kis Comment	Ma	p X-Axis	Y-Axis	Comment
Description:		D	escription:		
Unit:	- Id:	U	nit:		3
Name:	EGR Temperature	D	ata source:		Eprom 🔹
Start address:	C262E From hexdumpcursor	S	art address:		C261A From hexdumpcursor
Column x rows:	10 × 8			1	Mirror map
Values:	16 Bit (HiLo) 🔻	v	alues:	[16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) -	N	umber format:	: [Decimal (Base 10 System) 🔻
	Sign Difference			[Sign
-	Original values Percent	S	gnature byte:		
Organization:	Twodimensional				
Right side:	Bar display 👻				
Value range:	0 - 65536 Auto				
Factor, offset:	Value= + 0.000000		actor, offset:		Value=+ -273.10000
Reciprocal:	1		Reciprocal:		1
Variable offset:	(none)				
Precision:	0 ^{Bar} [°] C 1 % f(x) ▼	P	ecision:		0 % f(x) ▼
	OK Cancel Help			(OK Cancel Help

Properties of	×
Map X-Axis Y-Axi	xis Comment
Description:	RPM
Unit:	1/min
Data source:	Eprom 💌
Start address:	C260A From hexdumpcursor Mirror map
Values:	16 Bit (HiLo)
Number format:	Decimal (Base 10 System) -
Signature byte:	Sign
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Precision:	0 [®] ar [®] C 1 [®] (f(x) ▼
	OK Cancel Help

15. Turbo (Boost request) map:

General:

This map set the required boost depending on the requested torque and current rpm. There might be more than one boost map. In this file there is 2 maps, 1st is used during DPF regeneration, 2nd during normal operation. Boost request is measured in Absolute pressure (Bara, mBara, ect.)

□ Absolute pressure is zero-referenced against a perfect vacuum, so it is equal to gauge pressure plus atmospheric pressure.

□ **Gauge pressure** is zero-referenced against ambient air pressure, so it is equal to absolute pressure minus atmospheric pressure. Negative signs are usually omitted. To distinguish a negative pressure, the value may be appended with the word "vacuum" or the gauge may be labeled a "vacuum gauge."

Properties of	X	Properties of	X
Map X-Axis Y-Ax	xis Comment	Map X-Axis Y-A	xis Comment
Description:	Boost pressure	Description:	Q
Unit:	mbar Id:	Unit:	mm3/stk
Name:	Boost Pressure	Data source:	Eprom 👻
Start address:	DFD14 From hexdumpcursor	Start address:	DFCF4 From hexdumpcursor
Column x rows:	16 × 16		Mirror map
Values:	16 Bit (HiLo) ▼ Values: 16 Bit (HiLo) ▼ Skip bytes: 0		
Number format:	Decimal (Base 10 System) 💌	Number format:	Decimal (Base 10 System) 🔻
	Sign Difference Sign		Sign
	Original values Percent	Signature byte:	
Organization:			
Right side:			
Value range:	0 - 65536 Auto		
Factor, offset:	Value= 1.000000 * Eprom Factor, offset: 0.010000 * Eprom 1 Reciprocal: Value= 0.010000 * Eprom		
Variable offset: (none)			
Precision:	Bar ℃ 1 0 % f(x)) ▼	Precision:	Bar ℃ 1 1 % f(x) ▼
	OK Cancel Help		OK Cancel Help

Properties of	X
Map X-Axis Y-Av	cis Comment
Description:	RPM
Unit:	1/min
Data source:	Eprom 💌
Start address:	DFCD4 From hexdumpcursor
Values:	16 Bit (HiLo)
Number format:	Decimal (Base 10 System) -
Signature byte:	Sign
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Precision:	0 ⁸ ar [°] C 1 % (f(x) ▼
	OK Cancel Help

16. Turbo (Boost) limiter map:

General:

This map limits the required boost depending on the atmospheric pressure and the current rpm.

Properties of	×	Properties of	x
Map X-Axis Y-Ax	ris Comment	Map X-Axis Y-Axis Comment	
Description:	MAP	Description: Atmospheric Pressure	
Unit:	mbar ld:	Unit: mbar	
Name:	Boost Limiter	Data source: Eprom	
Start address:	DFF9A From hexdumpcursor	Start address: DFF7A From hexdumpcursor	
Column x rows:	16 × 16		
Values:	16 Bit (HiLo) 🔹	Values: T6 Bit (HiLo) - Skip bytes: 0	
Number format:	Decimal (Base 10 System) -	Number format: Decimal (Base 10 System)	-
		Sign	
	Original values Percent	Signature byte:	
Organization: Twodimensional			
Right side: Bar display 🔻			
Value range:	0 - 65535 Auto		
Factor, offset:	1.000000 * Eprom	Factor, offset: 1.000000 * Eprom	
Reciprocal: Value= + 0.000000 I Value= Value= + 0.000000 1			
Variable offset: (none)			
Precision:	Bar °C 1 % [fix] ▼	Precision: 0 Bar C	
	OK Cancel Help	OK Cancel Help	

Properties of	X
Map X-Axis Y-Ax	xis Comment
Description:	RPM
Unit:	1/min
Data source:	Eprom 🔻
Start address:	DFF5A From hexdumpcursor
Values:	16 Bit (HiLo)
Number format:	Decimal (Base 10 System) -
Signature byte:	Sign
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Precision:	0 ^{Bar} [°] C 1 % (f(x) ▼
	OK Cancel Help

17. Single value boost limiter:

General:

This value limits the absolute pressure of the turbo. This value can be found by looking directly behind the turbo limiter map. If you look in 2D you see a series of bumps like this:

The SVBL is located at the end of the series of bumps, just before the line "falls" back to "0". In this case it is the highest value between the turbo limitation map and the next map. The value of the SVBL in this file is 2500mBar.

Properties of	×
Map Comment	
Description:	Single Boost
Unit:	mbar Id:
Name:	Single Boost (SVBL)
Start address:	E019A From hexdumpcursor
Column x rows:	1 × 1
Values:	16 Bit (HiLo) 🗸
Number format:	Decimal (Base 10 System)
	Sign Difference
	Original values <u>P</u> ercent
Organization:	Single value 🔻
Right side:	Bar display 🔹
Value range:	0 - 65535 Auto
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Variable offset:	(none)
Precision:	Bar ℃ 1 % ffx) ▼
	OK Cancel Help

18. Turbo vanes (N75) map:

General:

This map controls the vanes inside the turbo at a certain rpm and injected quantity. There is 4 maps, 1st is used during DPF regeneration, 2nd during normal operation.

Requested boost is how much boost the turbo should be making according to the map like in the ECU

Actual boost is how much boost the turbo is making, measured by the MAP (<u>Manifold Absolute Pressure</u>) sensor. this should obviously be similar to the requested value, however it's normal for it to have a little bit of lag, and then spike as the turbo spools up before returning to "about the same as the requested value"

N75 Duty Cycle this is given as a %, the highest it reads to is 75% and the lowest is around 30%. A low duty cycle equates to the ECU asking for more boost from the turbo, and a high duty cycle means the ECU has too much boost already and is requesting the boost be lower. so looking at the graph as accelerator is pressed, more fuel is injected and more boost is requested, as the boost is requested you will see the duty cycle go down, the boost will then rise to the required value as the turbo spools up and then the duty cycle will increase as you go up the revs. It does this because the amount of air flowing through the turbo is increasing, and with that increasing the need for the the vanes to close and build more boost is decreasing, hence the duty cycle rising.

You have the N75 tables, Boost tables and hysteresis tables that work together.

OPENLOOP mode - The turbo is controlled by the N75 wastegate tables only. The ECU does not care how much boost this gives...only that the requested VNT/N75 duty is met.

FEEDBACK mode - The turbo is controlled by the PID controller. The ECU looks up requested boost and compares to actual boost. It closes the wastegate to increase actual boost and opens the wastegate to lower actual boost.....whatever is required to get requested boost. The initial wastegate value chosen come from the N75 tables and works from there. So its best to get the N75 values as accurate as possible to begin with.

HYSTERISIS tables - Selecting which mode the turbo should be in is the job of the hysterisis tables. On mine 0-1500rpm @ 40mg + will swap from openloop to feedback. Dropping below 38mg between 0-1500rpm will fall back into openloop mode. Basically at low~ idle speeds the turbo is controlled by the N75 tables only.

You could set hysterisis between 40-38 mg down to 2-1mg instead. This would force Feedback mode at all times. You could set hysterisis to 100-98mg across the whole rpm range. This would force openloop mode at all times.

Properties of	×	Properties of	×
Map X-Axis Y-Ax	kis Comment	Map X-Axis Y-A	wis Comment
Description:	Vane angle	Description:	IQ
Unit:	Deg Id:	Unit:	mm3/stroke
Name:	N75 - 2 regular	Data source:	Eprom
Start address: Column x rows:	DDFE6 From hexdumpcursor 16 × 16	Start address:	DDFC6 From hexdumpcursor
Values:	16 Bit (HiLo) 🔹	Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) 💌	Number format:	Decimal (Base 10 System) 💌
	Sign Difference Original values Percent	Signature byte:	Sign
Organization:	Twodimensional 👻		
Right side:	Bar display 👻		
Value range:	0 - 65536 Auto		
✓ Factor, offset: ■ Reciprocal:	Value= 0.012207 * Eprom 1 + 0.000000	Factor, offset:	Value= + 0.0000000
Variable offset:	(none)		
Precision:	Bar ℃ 1 1 % (fox) ▼	Precision:	Bar)℃ 1 1 % (f(x)) ▼
	OK Cancel Help		OK Cancel Help

Properties of	×
Map X-Axis Y-Axis	s Comment
Description:	RPM
Unit:	1/min
Data source:	Eprom
Start address:	DDFA6 From hexdumpcursor
Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) -
Signature byte:	Sign
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Precision:	0 ⁸ [°] C 1 [∞] f(x) ▼
	OK Cancel Help

19. Lambda:

General:

Is calculated from the characteristic map FIMng_rLamSmk_MAP in dependence on the supplied to the cylinder air mass AFSCD_mAirPerCylFil and the averaged motor speed Eng_nArvg critical for this operating point lambda FIMng_rLamSmk_mp value determined. The lambda value is the ratio:

lambda =	Air mass present in cylinde	r _ Airi	mass present in cylinder
lamboa –	Stoechiometric air mass	Inje	ected fuel mass * 14.5
Properties of	X	Properties of	×
Map X-Axis Y-Ax	is Comment	Map X-Axis Y-Ax	ús Comment
Description:	Lamba	Description:	Air Mass
Unit:	AFR Id:	Unit:	mg/strk
Name:	Smoke Limit Long term (Higher Lambda)	Data source:	Eprom 👻
Start address:	CCB42 From hexdumpcursor	Start address:	CCB22 From hexdumpcursor
Column x rows:	16 × 16		Mirror map
Values:	16 Bit (HiLo) ▼	Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) -	Number format:	Decimal (Base 10 System) -
	Sign Difference		Sign
	Original values Percent	Signature byte:	
Organization:	Twodimensional		
Right side: Value range:	Bar display ▼ 0 - 65536 Auto		
			0.100000 + 5
Factor, offset:	Value= + 0.000000	Factor, offset:	Value= + 0.000000
Variable offset:	1 (none)		1
Valiable Unset.	Bar °C 1		Bar) ℃ 1
Precision:	1 % f(x) ▼	Precision:	
	OK Cancel Help		OK Cancel Help

Properties of	×
Map X-Axis Y-Ax	is Comment
Description:	RPM
Unit:	1/min
Data source:	Eprom 🔹
Start address:	CCB02 From hexdumpcursor
	Mirror map
Values:	16 Bit (HiLo) ▼ Skip bytes: 0
Number format:	Decimal (Base 10 System) -
Signature byte:	Sign
Factor, offset:	Value= 1.000000 * Eprom 1 + 0.000000
Precision:	0
	OK Cancel Help

Tuning

Fuel related maps

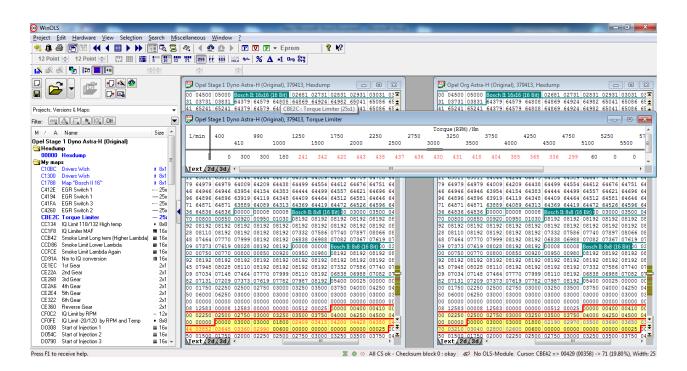
This example is from car tuned by popular tuner. While he works all over with increase of 20%, for safety I did my car with only 15% increases (and so in this example).

1. Drivers wish Maps:

If we want to tune a stock cdti/jtd engine it is enough to change the driver wish, torque limiter, smoke limiter, IQ limiter by IAT, IQ limiter by RPM, IQ limiter by Oil Temp, duration map (sometimes). EGR map and the turbo maps come later on.

The drivers wish can stay the same for pedal request up to 50% (to keep the MPG). Pro tuned Astra have manual transmission and got tuned only last column. To get more power also before the kick down I tune the last two columns. I increase mine by 15% but not more than 500NM, as the NM to IQ map is calibrated to this value. Pro tuner rise all to 500Nm.

😡 WinOLS		-							_	
	Search Mis	cellaneous	Window ?						_	
						? №				
	🔲 🗟 🧧			🔽 💌 🛨 Ерг		8 41				
	8 16 32	F1 255	HILO **	% <u>∧</u> ×1 0	19 813					
i 🕷 🕷 📲 🖬 🔳 🌆		×	 							
		🛛 🔛 Opel S	itage 1 Dyno Astra	-H (Original), 3	79413, Driv	ers Wish			• 💌	💭 Opel Org Astra-H (Original), 379413, Hexdump 💿 🖾 🔀
				Torque (Thro	ttle,RPM	()/NM			*	
		8	1.0	10.0	35.0	65.0				00 00000 00000 00000 00000 00000 00000 0000
Projects, Versions & Maps:	-	1/min	5.0	12.5	5	5.0	75.0			72 00002 00000 00000 00050 00050 00050 00006 00500 01500 01700 01
										00 06000 00200 00200 04500 05000 05500 06000 01500 01500 01500 01
Filter:		0	0 118	183 266	381	444 47				00 01500 01500 01500 01500 01500 01500 01500 00235 13312 00258 0C
M / A. Name	Size 🔺	400	0 94 0 58	146 220 111 168	356 314	434 46				01 00512 00256 00000 00080 00320 00000 01300 21248 00000 00000 01 00 03000 04000 05000 50304 60416 61696 63232 63296 01024 05120 15
Opel Stage 1 Dyno Astra-H (Original)		1000	0 41	77 130	288	400 42				92 08192 08192 08192 0000 00000 00000 00000 08192 08192 08192 08
Hexdump		2000	0 34	56 100	266	386 41				92 08192 08192 08192 00000 00000 00000 00000 08192 08192 08192 08
00000 Hexdump		2500	0 24	47 84	245	369 40			=	92 08192 08192 08192 00000 00000 00000 00000 08192 08192 08192 08
🔄 My maps	=	3000	0 22	42 72	225	347 38		-	-	92 08192 00000 00000 08192 08192 08192 08192 08192 08192 08192 08
C10BC Drivers Wish	∎ 8x1	3500	0 16	37 60	206	325 36	9 500	-		92 08192 08192 08192 08192 08192 08192 00000 00000 08192 08192 08192 08
C1300 Drivers Wish	∎ 8×1	4000	0 0	22 46	189	296 34	9 500			00 00000 08192 08192 08192 08192 08192 08192 08192 08192 08192 00000 0C
C1788 Map "Bosch II 16"	∎ 8x1	4500	0 0	0 24	166	261 32				92 08192 08192 08192 00000 00000 00015 00015 00002 01000 00003 0C
C412E EGR Switch 1	25x	5000	0 0	0 0	41	112 16		_		04 00000 00000 05000 65535 60536 00000 05000 00769 12925 00258 04
C4194 EGR Switch 1 C41FA EGR Switch 3	25x 25x	5200	0 0	0 0	0	15 4		-		00 00000 33540 17575 00100 00060 00060 00060 00060 00060 00060 0C
C4260 EGR Switch 2		5900	0 0	0 0	0	0	0 0			20 01000 00002 00051 00972 00500 17377 00056 00069 00084 00103 0C
CBE2C Torque Limiter	- 25x	9								59 00433 00512 00597 00677 00752 00816 00867 00905 00932 00950 0C
CC134 IQ Limit 118/132 High temp	= 8x8								-	92 00365 00438 00510 00583 00656 00729 00802 00875 00948 01021 01 58 01531 01604 01677 01750 00030 00030 00030 00030 00700 01024 00
CC1F8 IQ Limiter MAF	■ 16×	Iext 2	2d/3d/ <						•	71 00004 00000 00000 00004 00004 03584 00000 00328 00000 01024 00
CCB42 Smoke Limit Long term (Higher Lambda		140 63079	01400 01400	06000 01500	01400_01	281 65535	0000010	0000 00		40 63079 01400 01400 06000 01500 01400 01281 65535 00000 00000 00
CCD86 Smoke Limit Lower Lambda	■ 16×		00050 00013							57 00000 00050 00013 00008 00000 00400 01000 01500 02000 02500 03
CCFCE Smoke Limit Lambda Again	🔳 16x	00 05900		00819 01024						00 05900 00082 00410 00819 01024 02867 04506 05325 06144 00000 01
CD91A Nm to IQ conversion	■ 16×	45 05245			03560 04			0000 OC		45 05245 00000 00940 01463 02196 03560 04340 04625 05165 00000 0C
CE1EC 1st Gear	2x1	45 05000	00000 00413	00770 01301	02878 04	000 04285	05000 0	0000 OC		45 04985 00000 00413 00770 01301 02878 04000 04285 04745 00000 0C
CE22A 2nd Gear	- 2x1	45 05000	00000 00240	00470 00836	02452 03	8690 04012		0000 OC		45 04574 00000 00240 00470 00836 02452 03690 04012 04450 00000 0C
CE268 3rd Gear	- 2x1	55 05000	00000 00160			3250 03685		0000 OC		55 04295 00000 00160 00370 00600 02058 03250 03685 04130 00000 0C
CE2A6 4th Gear CE2E4 5th Gear	2x1 2x1	93 05000	00000 00000			2605 03259		0000 OC		93 03891 00000 00000 00000 00240 01655 02605 03259 03625 00000 0C
CE322 6th Gear	2x1	78 05000	00000 00000			150 00400		0000 00		78 02640 00000 00000 00000 00000 00000 00150 00400 00600 00000 oc
CE360 Reverse Gear	2x1	00 00000		01800 00000		0000 0000		0270 OC 0250 OC		00 00000 01300 01500 01800 00000 00000 00000 00000 00120 00270 00 00 01600 01650 01740 01850 00000 00000 00000 00000 00100 00250 00
CF0C2 IQ Limit by RPM	- 12x	00 01600		01850 00000 01850 00000	00000 00			0250 00		00 01600 01650 01740 01850 00000 00000 00000 00000 00100 00250 00 00 01500 01600 01700 01850 00000 00000 00000 00000 00000 00220 00 0
CFOFE IQ Limit -20/120 by RPM and Temp	• 8×8		01470 01650							
D0308 Start of Injection 1	■ 16×		01300 01500							50 01250 01300 01500 01700 00000 00000 00000 00000 00060 00170 00
D054C Start of Injection 2	■ 16x	50 01100	01200 01450							
D0790 Start of Injection 3	≡ 16x -	Iext/2	d/3d/ <					Þ		50 01100 01200 01450 01600 00000 00000 00000 00000 00050 00130 0C工 <u>Text 2d 3d</u> ←
Press F1 to receive help.		,					2 🔹 🕸	All CS ok - C	hecksum b	lock 0 : okay 🛛 🐼 No OLS-Module Cursor: C10AC => 00001 (00001) -> 0 (0.00%), Width: 8


🐼 WinOLS						
Project Edit Hardware View Selection	Search Mise	cellaneous Window ?				
* 8 5 🖻 🖻 🕅 📢 4 🔳 🕨 💓	M 🗟 💆	🗠 🔺 🏟 🗠 🕨 🖬 🖸	💽 🕶 Eprom 🛛 🤗 🕅	•		
12 Point 🚔 12 Point 🚔 🔣 🔢	8 16 32	11 255 FF 111 LOHI +-	% 🛕 ×1 0m 833			
🖹 🕷 🚿 🍢 🏣 📰		A A Y				
		📮 Opel Stage 1 Dyno Astra-	H (Original), 379413, Drivers Wish		• 💌	📴 Opel Org Astra-H (Original), 379413, Hexdump 💿 🗉 🖾
			Forque (Throttle, RPM) /NM		*	
		\$ 1.0 1	0.0 35.0 65.	5		00 00000 00000 00000 00000 00000 00000 0000
Projects, Versions & Maps;	-	1/min 5.0	12.5 55.0	75.0		72 00002 00000 00000 00050 00050 00050 00006 00500 01500 01700 01.
						00 06000 00200 00200 04500 05000 05500 06000 01500 01500 01500 01
Filter:		0 0 0	0 0 0 0	0 0		00 01500 01500 01500 01500 01500 01500 01500 00235 13312 00258 00
M / A, Name	Size 🔺	400 0 0	0 0 0 0	0 0		01 00512 00256 00000 00080 00320 00000 01300 21248 00000 00000 01
Opel Stage 1 Dyno Astra-H (Original)		1000 0 0		0 2		00 03000 04000 05000 50304 60416 61696 63232 63296 01024 05120 15
Hexdump		1500 0 0		0 26 0 43		92 08192 08192 08192 00192 00000 00000 00000 00000 08192 08192 08192 08 92 08192 08192 08192 00192 00000 00000 00000 00000 08192 08192 08192 08
00000 Hexdump		2000 0 0	0 0 0 0	0 43		92 08192 08192 08192 00192 00000 00000 00000 00000 08192 08192 08192 08 92 08192 08192 08192 00000 00000 00000 00000 08192 08192 08192 08
	E	3000 0 0	0 0 0 0	0 71	=	92 08192 00000 00000 08192 08192 08192 08192 08192 08192 08192 08
C10BC Drivers Wish	∎ 8x1	3500 0 0	0 0 0 0	0 87		92 0819
C1300 Drivers Wish	∎ 8×1	4000 0 0	0 0 0 0	0 111		
C1788 Map "Bosch II 16"	8x1	4500 0 0	0 0 0 0	0 138		92 08192 08192 08192 00000 00000 00015 00015 00002 01000 00003 0C
C412E EGR Switch 1	25x	5000 0 0	0 0 0 0	0 236		04 00000 00000 05000 65535 60536 00000 05000 00769 12925 00258 04
C4194 EGR Switch 1	- 25x	5200 0 0	0 0 0 0	0 440		00 00000 33540 17575 00100 00060 00060 00060 00060 00060 00060 00
C41FA EGR Switch 3		5900 0 0	0 0 0 0	0 0		20 01000 00002 00051 00972 00500 17377 00056 00069 00084 00103 00
C4260 EGR Switch 2	— 25x 🖌	0000		0 0		59 00433 00512 00597 00677 00752 00816 00867 00905 00932 00950 0C
CBE2C Torque Limiter	- 25x					92 00365 00438 00510 00583 00656 00729 00802 00875 00948 01021 01
CC134 IQ Limit 118/132 High temp	• 8x8				*	58 01531 01604 01677 01750 00030 00030 00030 00030 00700 01024 0C
CC1F8 IQ Limiter MAF	■ 16×	Text 2d/3d/ <	III		•	71 00004 00000 00000 00004 00004 03584 00000 00328 00000 00000 00
CCB42 Smoke Limit Long term (Higher Lambda	a) 🔳 16x 🔰	140 63079 01400 01400 0	6000 01500 01400 01281 6553	5 00000 00000 OC		40 63079 01400 01400 06000 01500 01400 01281 65535 00000 00000 00
CCD86 Smoke Limit Lower Lambda	■ 16x	57 00000 00050 00013 0	0008 00000 00400 01000 0150	0 02000 02500 03		57 00000 00050 00013 00008 00000 00400 01000 01500 02000 02500 03
CCFCE Smoke Limit Lambda Again	■ 16×	00 05900 00082 00410 0				00 05900 00082 00410 00819 01024 02867 04506 05325 06144 00000 01
CD91A Nm to IQ conversion	■ 16×	45 05245 00000 00940 0	1463 02196 03560 04340 0462	5 05165 00000 OC		45 05245 00000 00940 01463 02196 03560 04340 04625 05165 00000 oc
CE1EC 1st Gear	· 2x1	45 05000 00000 00413 0	0770 01301 02878 04000 0428	5 05000 00000 oc		45 04985 00000 00413 00770 01301 02878 04000 04285 04745 00000 oc
CE22A 2nd Gear	· 2x1	45 05000 00000 00240 0	0470 00836 02452 03690 0403	.2 05000 00000 oc		45 04574 00000 00240 00470 00836 02452 03690 04012 04450 00000 oc
CE268 3rd Gear	· 2x1	55 05000 00000 00160 0	0370 00600 02058 03250 0368	5 05000 00000 OC		55 04295 00000 00160 00370 00600 02058 03250 03685 04130 00000 oc
CE2A6 4th Gear	· 2x1	93 05000 00000 00000 0	0000 00240 01655 02605 0325	9 05000 00000 OC		93 03891 00000 00000 00000 00240 01655 02605 03259 03625 00000 00
CE2E4 5th Gear	· 2x1	78 05000 00000 00000 0	0000 00000 00000 00150 0040	<u>0 05000 00000 00</u>		78 02640 00000 00000 00000 00000 00000 00150 00400 00600 00000 00
CE322 6th Gear	· 2x1	00 00000 01300 01500 0	1800 00000 00000 00000 0000	0 00120 00270 00		00 00000 01300 01500 01800 00000 00000 00000 00000 00120 00270 oc
CE360 Reverse Gear	2x1		1850 00000 00000 00000 0000	0 00100 00250 OC		00 01600 01650 01740 01850 00000 00000 00000 00000 00100 00250 oc
CF0C2 IQ Limit by RPM	- 12x	00 01500 01600 01700 0	1850 00000 00000 00000 0000	0 00080 00220 0C		00 01500 01600 01700 01850 00000 00000 00000 00000 00080 00220 00
CF0FE IQ Limit 20/120 by RPM and Temp	• 8x8	50 01380 01470 01650 0				50 01380 01470 01650 01850 00000 00000 00000 00000 00070 00170 oc
D0308 Start of Injection 1	■ 16x	50 01250 01300 01500 0				50 01250 01300 01500 01700 00000 00000 00000 00000 00060 00150 00
D054C Start of Injection 2	■ 16×	50 01100 01200 01450 0	1600 00000 00000 00000 0000	<u>0 000</u> 50 00130 0C		50 01100 01200 01450 01600 00000 00000 00000 00000 00050 00130 0C
D0790 Start of Injection 3	■ 16x -	lext 2d/3d/ <		· ·		Text 2d/3d <
Press F1 to receive help.				St ALCS of a C	heckrum bl	lock 0 : okay 🛷 No OLS-Module Cursor: C10D2 => 00000 (00000) -> 0 (0.00%), Width:
Press 12 to receive help.				All CS OK - C	necksum bi	lock 0 . 0kay 40 The Ocs-Woulde Curson, C10D2 = 2 00000 (00000) - 2 0 (0.0076), Width:

2. Torque limiter:

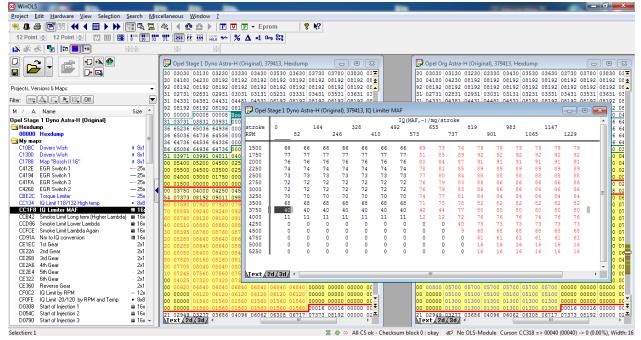
The torque limiter can be increased up to 4500rpm by \pm 15%, leave car stock over those rpm (hard cut). Do not reduce the requested % in before 4500rpm as it will make your car powerful at low and powerless at high rpm (very inconvenient for overtaking, especially on auto-gearbox kick-down).

To avoid clutch problem start from 1250 with less %, and has the max % at 2000rpm on. So you will keep similar torque curve shape.

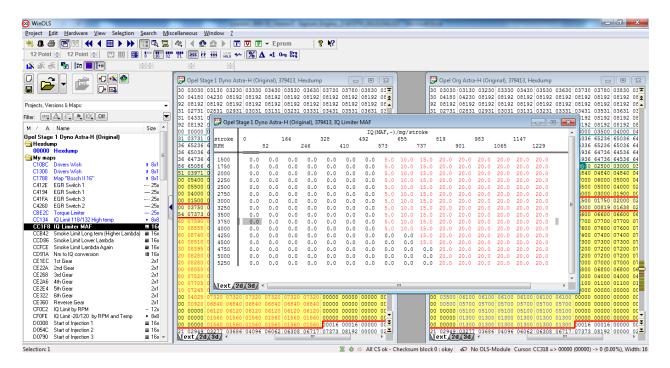
To give an example looks at the picture below. It is an original text view of the torque limiter.

The modified torque limiter in % can look something like the picture below.

🐼 WinOLS	_	-	_			-	-	-	-									-						x
Project Edit Hardware View Selection	Search Mi	scellaneo	us Windov	/ ?									_								_			_
	(T) 🔍 💆	2	(🙆 🛆	-	V P - i	nrom	9	? \ ?																
			55 EE 333																					
			_				1																	
		📮 o ₁	pel Stage 1 D	yno Astr	a-H (Original), 379413,	Hexdump)			23		3	Opel Or	g Astra-I	H (Origii	nal), 379	413, He	xdump					23
			4500 05000 3731 03831																			02931 65041		
Projects, Versions & Maps:	-	41 65	5241 65241	64379	64579 648	08 6486	9 64924	64982	65041	65086	65 🔺		41	65241	65241	64379	64579	64808	64869	64924	64982	65041	65086	<u>65 🔺</u>
Filter:	•) 🔛 🖓	pel Stage 1 D	yno Astr	a-H (Original), 379413,	Torque Li	miter																×
M / A. Name	Size 🔺		in 400		990	1250		1750		2250		2750		ae (RPM) 3250		3750		1250		4750		5250		57
Opel Stage 1 Dyno Astra-H (Original)		1/mi	in 400	410	100		1500		2000		2500	2750	3000		3500		1000		4500		5100		5500 S	=
Hexdump 00000 Hexdump			-																					- 11
	=		0.0		0.0 0	.0 10.0	0 15.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	15.0	0.0	0.0	0.0	-
C10BC Drivers Wish	8x1	Iext	t <u>/2d/3d</u> /	•							III												•	
C1300 Drivers Wish	8x1	111 0.	0011 00011	04044	04244 044	13 0433	4 04305	04047	04705	04700	04		111	00011	03011	04044	09299	04475	04334	04305	09097	04709	04700	09
C1788 Map "Bosch II 16" C412E EGR Switch 1	8x1 25x		4979 64979				9 64554			64751				64979					64499		64612		64751	
C412E EGR Switch 1	25x		4946 64946							64696									64444				64696	
C4154 EGR Switch 3	25x		4896 64896																			64581		
C41FM EGR Switch 2	-25x		4871 64871																			64526		
CBE2C Torque Limiter	- 251		4836 64836													00000						03000		
CC134 IQ Limit 118/132 High temp	- 23 8x8		0800 00850							08192						00920			08192				08192	
CC154 IQ Limit 110/132 High temp CC1F8 IQ Limiter MAF	• oxo • 16x		8192 08192													08192			08192		08192		08192	
CCB42 Smoke Limit Long term (Higher Lambda			8110 08192																07332				08066	
CCD86 Smoke Limit Lower Lambda	16x		7464 07770																			07367		
CCFCE Smoke Limit Lambda Again	= 16x		7373 07619																00008			: 8x8 (16		
CD91A Nm to IQ conversion	16x		0750 00770																00950		08192		08192	
CE1EC 1st Gear	2x1		8192 08192																08192				08192	
CE22A 2nd Gear	2x1		7948 08028													08110						07586		
CE268 3rd Gear	2x1		7034 07148																			06988		
CE2A6 4th Gear	2x1		7131 07209																07987				00000	
	- 2x1		1750 02250																			04000		
CE2E4 5th Gear			6000 06250																			03000		
CE322 6th Gear	- 2x1		0000 00000																			00000		
CE360 Reverse Gear	2x1		2583 00008																			00400		
CF0C2 IQ Limit by RPM	- 12x		2250 02500							04500	04											04250		34
CFOFE IQ Limit -20/120 by RPM and Temp	• 8x8	00 00	0000 00000	03000	03000 018	00 0240	9 03415	04200	04428	04380	04		00	00000								03690		12
D0308 Start of Injection 1	■ 16×	44 03	3852 03648	03360	02990 006	00 0000	00000	00000	00000	00025	pc 🍝		70	03210								00000		
D054C Start of Injection 2 D0790 Start of Injection 3	■ 16× ■ 16× -	50 01	1500 01750 t/2d/3d/	02000 ∢	02250 025	00 0275	0 03000	03250	03500	03750	04≖			01500 xt/2d		02000	02250	02500	02750	03000	03250	03500	03750)4 ≚
		1-0									~		-											
Press F1 to receive help.								X	💱 🗘 🖡	All CS ok	- Chec	ksum blo	ock U : ok	ay a	/ No OL	.S-Modu	ile Cur	or: CBE	42 => 0	JUZU (001	JOU) -> 2	20 (100.00	J%), Wid	ath: 25


3. Nm to IQ conversion map:

This map usually stays stock for CRS. However when some of the SV limiters are missed to avoid being embarrassed paid tuners yield to temptation of de-calibrating the engine. Should be used with caution when tuning auto-gearbox cars. Many VAG owners got bad experience. As mention above Vectra got calibration to up to 500NM, so should be enough for stock tuning.


	- Opel Stage 1 Dyno Astra-H																			
Project	t <u>E</u> dit <u>H</u> ardware <u>V</u> iew	Selection S	earch M	iscellaneous	Window	2														-
🖲 🚨 🕌	🗟 🖻 🕅 📢 🖣 🛄 🕽	Image:	ð, 🔟 🖉	ຊ 🔺 🏥 🖆		🔽 🖻 ·	- Eprom		8 №											
11 Point	t 🚔 11 Point 🚔 [[]]		16 32 1	HT 285 FE 18		- % Δ	x1 Org ()rg)rg												
🕺 🖄 🕺	š 🍢 🛤 🔳 💷			A V																
	Y 👝 🖓										orque, RP									
j 🖻	; - 📂 📭		Nm 1/min	0 5	25	50	75		100	.25 1	50	75 2	00 2	50 3	00 3	50	100	450	500	
toiects Ve	rsions & Maps:	•	250	0.0	1.4	4.5	9.1	15.5	20.3	26.3	39.0	45.6	52.7	62.0	71.1	84.2	92.3	100.4	100.5	
			500 750	0.0	1.4	4.5	9.1 6.9	15.5 13.9	20.3	26.3	37.0 34.0	43.6	49.7 47.0	60.0 57.7	69.1 67.0	82.2 80.1	90.3 88.2	100.4	100.5	
lter:	A, II, P, KK, Off		1000	0.0	1.4	4.0	8.0	12.7	19.7	24.9	28.8	37.3	51.0	60.0	68.0	77.1	86.2	100.3	100.4	
A / N	Name	Size ^	1250	0.0	1.4	3.4	6.6	11.6	16.3	22.8	27.8	33.4	39.9	65.5	69.3	75.0	85.1	100.2	100.3	
	Hexdump		1500 1750	0.0	1.4	3.9	6.8 6.7	10.1	16.5 15.0	21.6	26.5	33.1 30.2	38.6 35.1	53.0 44.9	66.7 56.0	73.1 72.0	84.6 83.9	100.0	100.1	
🔁 My map			2000	0.0	0.7	2.7	7.3	10.5	15.3	21.2	25.1	29.1	34.4	43.5	54.2	67.9	82.0	100.0	100.1	
C108C	Drivers Wish Drivers Wish	■ 8x13 ■ 8x13 =	2250	0.0	0.5	2.8	7.3	13.3	17.8	21.4	24.4	28.7	34.0	42.8	53.7	67.0	81.0	98.5	100.0	
C1300	Drivers Wish	8x13	2500 2750	0.0	0.4	3.0	7.0	12.6 11.0	17.2	20.4	23.9 23.1	28.1	33.3 32.6	42.3 42.5	53.8 53.8	66.1 65.5	82.4 81.3	97.8 96.9	100.0	
C1300	Drivers Wish	8x13	3000	0.0	0.4	2.7	6.3	9.4	16.3	20.3	23.1	26.7	32.6	42.5	53.8	66.2	76.5	96.9	100.0	
C1788	Map "Bosch II 16"	8x13	3500	0.0	0.3	2.1	6.6	10.2	14.2	18.9	23.6	28.2	32.5	43.6	54.6	66.8	81.2	95.5	100.0	
C1788	Map "Bosch II 16"	8x13	4000	0.0	0.4	1.6	5.8	9.1	14.7	20.3	25.1	30.4	33.3	44.6	56.7	70.5	83.7	97.0	100.0	
	EGR Switch 1	25x1	4500	0.0	0.4	1.9	6.6	10.1	15.3	19.9	25.3	30.4	34.4	46.3	63.5	72.9	86.2	98.1	100.0	
	EGR Switch 1	25x1	5000	0.0	0.4	2.5	6.3	11.1	15.6	20.0	24.8	29.5	34.5	51.4	59.6	72.9	86.2	99.4	100.0	
C4194	EGR Switch 1 EGR Switch 1	- 25x1																		
	EGR Switch 3	- 25x1																		
	EGR Switch 3	- 25x1																		
C4260	EGR Switch 2	- 25x1																		
C4260	EGR Switch 2	- 25x1																		
CBE2C	Torque Limiter	25x1																		
	Torque Limiter	- 25x1																		
CC134	IQ Limit 118/132 High temp	• 8x8																		
CC134	IQ Limit 118/132 High temp	• 8x8																		
	IQ Limiter MAF IQ Limiter MAF	 16x1 16x1 																		
	Smoke Limit Long term (Higher																			
CCB42	Smoke Limit Long term (Higher																			
CCD86	Smoke Limit Lower Lambda	= 16x1																		
CCD86	Smoke Limit Lower Lambda	16x1																		
COFCE	Smoke Limit Lambda Again	a 16x1																		
	Smoke Limit Lambda Again	16x1																		
	Nm to IQ conversion	■ 16x1																		
	Nm to IQ conversion	16x -	Toyt /	2d/3d/ < 📃																

4. IQ limiter map:

This is map for engine speed dependent quantity limitation and the X-Axes is "minimum prevention factor calculated from temperature curves". I wrong to point it as Smoke map. So handle it as IQ limiter [], add same increase in %. Let says you can start from half of the map area increasing by 5%, then 7.5%, 10%, 12.5% and make the whole last quarter +15% or 20%.

Original the text view of the smoke map looked like the picture

5. Gear Dependent Torque Limiter

For cars with manual transition first and second gears are limited to 260Nm. For automatic transition 1st and 2nd gear has the same limits as 3rd, 4th, 5th, and 6th gear of the manual. So on cars with automatic transition there is no need to touch those maps, limit is already 1000Nm. Aisin Warner AF40-6 is rated well above 260Nm. However be advised that 2nd gear is the one (in AF40 namely - clutch 1 or band 1) that fail in most auto gear boxes.

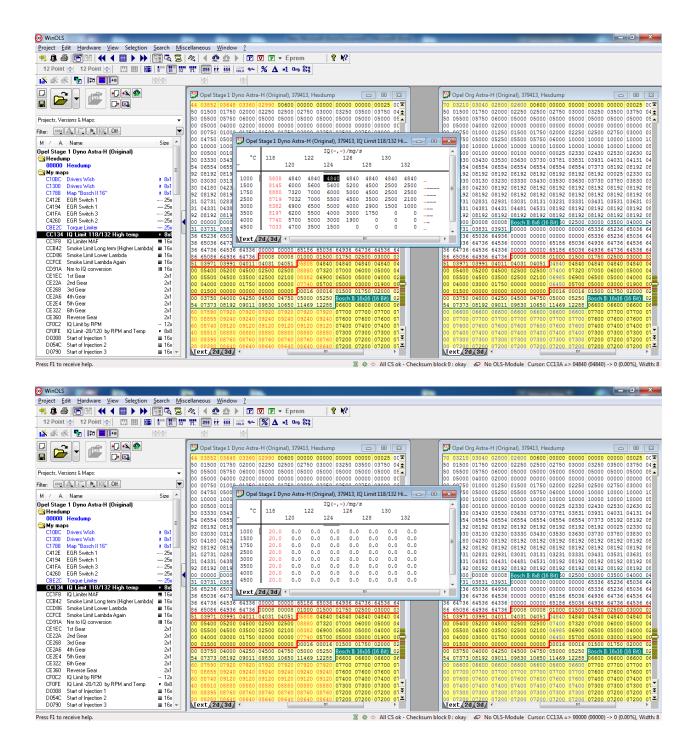
😡 WinOLS	_	-	_		- 400	Canel T	Sec	-	-				_	-	-		
Project Edit Hardware View Selection Search	n <u>M</u> iscellaneou	s <u>W</u> indov	v <u>?</u>														
* 3 @ @ 11 4 4 1 > > 11	5, 🖾 🛠 🖣	🏩 🖆	🖬 💟	🍷 👻 Ерг	rom	🤋 №?	17 Pc	oint 🚔 🛛 1	7 Point 🚔			16 32 F1	255 FF	111 LOHI -	v- %∆	×1 0rg (373 👫 🕷
	🔛 Opel Stage	1 Dyno As	tra-H (Tuned	Stage 1), 37	9413, Hexdu	ımp *											
	0CDF1E	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	0000
	0CDF3E	0000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	0000
Projects, Versions & Maps: 🔹	0CDF5E		00000	00000		00000		00000		00000	00000		00000		00000	00000	0000
Filter:	0CDF7E		00000	00000		00000		00000	00000	00000	00000		00000			00000	
M / A. Name Size ^	0CDF9E	00000			00000						00000		00000			00000	
00000 Hexdump	OCDFBE	57344					00002							00992		00992	
	OCDEDE		00256													00258	
C10BC Drivers Wish 8x13	OCDFFE	000							00010	00000	00025	00013	00020			00258	
C1300 Drivers Wish # 8x13			🗐 Opel Stag	e 1 Dyno As	tra-H (Tune	d Stage 1),	379413, 1st	Gear *					• X				
C1788 Drivers Wish sport 8x13 C262E Map "Bosch II 16" = 10x8	OCE01E	000		Gear	Depen	lent T	orque	Limite	r (RPM) /Nm						00086	
C2898 EGR vs MAF 16x14	0CE03E	081	1/min	635	Depen	actic 1	orque .		1 (10114	///					08192	00000	
C39E4 EGR Opening Calibration = 16x8	OCE05E	000	1/11111	035	4000									03231	02731	00000	0000
C412E EGR Switch 1 - 25x1 =	OCE07E	214			4000								=	00000	00000	00000	0000
C4194 EGR Switch 2 - 25x1	OCE09E	000		┠────	3									01015	00020	00057	0007
C41FA EGR Switch 3 25x1 C4260 EGR Switch 4 25x1	0CE0BE	000		1000	0 10000									00775	00849	00906	0094
CBA2E friction torque 16x16	0CE0DE	000											-			02981	
CBE2C Torque Limiter - 25x1	0CE0FE	028	Iext 2d	3d/ < 🔛					11				•		04531	04631	
CC134 IQ Limit 118/132 Oil temp 8x8			00000	00000	00000	65505	00000	CEEDE	00000	0.000	0.0000	04250	00000				
CC1F8 IQ Limiter = 16x16	OCE11E		00060														
CCA7E IQ correction = 8x8	OCE13E		L 02231											1			
CCB42 Smoke Limit Long term (Higher 16x16 CCD86 Smoke Limit Lower Lambda 16x16	OCE15E	00224	1 01394	00355	01069	00355	01069	01843	01069	01843	02727	01843	02727	03627	02727	03627	0456
CCFCE Smoke Limit Lambda Again	0CE17E	0362	04565	05769	04565	05769	01069	00355	00355	00000	03000	00000	65535	00000	65535	65535	6553
CD212 Lambda prob Sport a 16x16	OCE19E	6553	5 00016	00200	00400	00600	00800	01000	01200	01400	01600	01800	02000	02200	02400	02800	0340
CD922 Nm to IQ conversion ■ 16x16	0CE1BE	04000	06000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	0000
CE1EC 1st Gear 2x1	0CE1DE		00000														
CE22A 2nd Gear 2x1 CE268 3rd Gear 2x1	OCE1FE		03500									10000					
CE246 4th Gear 2x1																	
CE2E4 5th Gear 2x1	OCE21E	10000				00635	04000	10000	10000			01750				02750	
CE322 6th Gear - 2x1	0CE23E		03750									10000				10000	
CE360 Reverse Gear 2x1	OCE25E	10000	0 10000	00002	00635	04000	10000	10000	01250	01500	01750	02000	02250	02500	02750	03000	0350
CF0C2 IQ Limit by RPM - 12x1	0CE27E	03750	04000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	1000 -
CF0FE IQ Limit -20/120 IAT	0CE29E	10000	00002	00635	04000	10000	10000	01250	01500	01750	02000	02250	02500	02750	03000	03500	0375 🔟
D0506 Start of Injection 1 = 16x16 =	Text 2d 3								-		-		-				+
							_										

Press F1 to receive help.

🕱 🚸 🜣 All CS ok - Checksum block 0 : okay 🛛 🐼 No OLS-Module Cursor: CE1EC => 10000 (02600) -> 7400 (284.60%), Width: 2

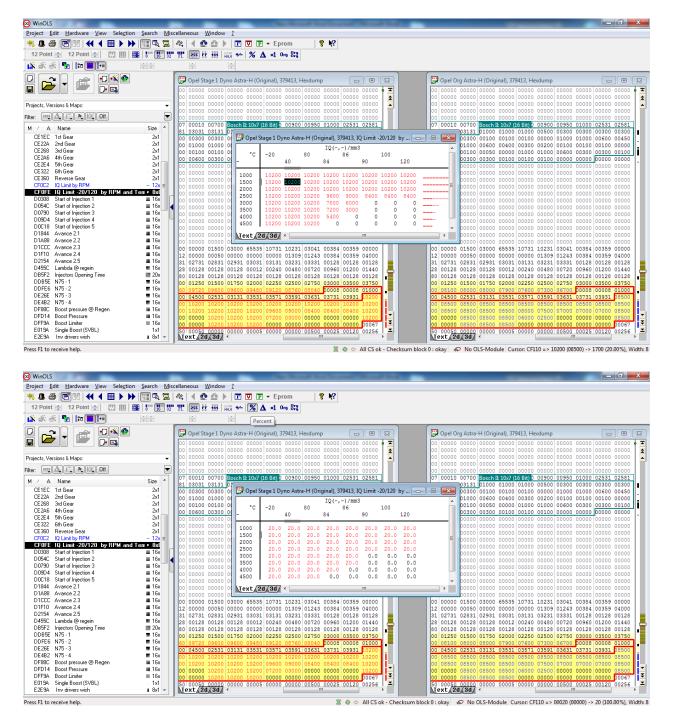
🥺 WinOLS																	
Project Edit Hardware View Selection Search	<u>M</u> iscellaneous	<u>W</u> indow	2														
*! \$ @ @ 11 11 11 11 11 11 1	5 📕 🔍 🖣	@ ≙ ▶	E V	💌 👻 Ерг	rom	? ∖?	17 Pc	oint 🚔 🛛 1	7 Point 🚔			16 32 F	. 255 FF	111 LOHI HILO	~ % 🛽	x1 Org (889 🛛 👫 🖄
	🔛 Opel Stage :	1 Dyno Astra	a-H (Tuned	Stage 1), 37	9413, Hexdu	mp *										-	
	0CDF1E	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	0000
· · · · · · · · · · · · · · · · · · ·	0CDF3E	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	0000
Projects, Versions & Maps: 🔹	0CDF5E	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	0000
Filter:	0CDF7E	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	0000
M / A. Name Size ^	0CDF9E	00000	00000	00000	00000	00800	00002	00000	00000	00024	00000	00024	00000	00000	00000	00000	0092
00000 Hexdump	OCDFBE	57344	27861	57344	00002	00000	00002	00000	00000	00003	00000	00000	00064	00992	36896	00992	0050
🔁 My maps	OCDFDE				02560												0002
C10BC Drivers Wish # 8x13	OCDFFE	000							00010	00000	00020				00258		
C1300 Drivers Wish 8x13 C1788 Drivers Wish sport 8x13	0CE01E	000	Opel Stag	e 1 Dyno As	tra-H (Tune	d Stage 1),	379413, 1st	Gear *							00002		
C262E Map "Bosch II 16" = 10x8	0CE03E	081		Gear	Depend	lent T	orque i	Limite	r (RPM)/Nm			*		08192		
C2B98 EGR vs MAF = 16x14	0CE05E	000	1/min	635											02731		
C39E4 EGR Opening Calibration = 16x8 C412E EGR Switch 1 - 25x1 -	0CE07E	214			4000										00000		
C412E EGR Switch 2 - 25x1	OCE07E	000											=	01015			
C41FA EGR Switch 3 25x1	0CE09E	000		740	0 7400								_		00849		0094
C4260 EGR Switch 4 - 25x1											Delta: +	7400 (284.6	(%)				
CBA2E friction torque ■ 16x16 CBE2C Torque Limiter - 25x1	OCEODE	009	ext 2d	3d/ <					11		_		•		03031		0293
CC134 IQ Limit 118/132 Oil temp • 8x8	0CE0FE	028													04531		
CC1F8 IQ Limiter = 16x16	0CE11E				00060												
CCA7E IQ correction = 8x8	OCE13E				00004									00749			0027
CCB42 Smoke Limit Long term (Higher = 16x16 CCD86 Smoke Limit Lower Lambda = 16x16	OCE15E				01069							01843		03627			0456
CCFCE Smoke Limit Lambda Again	OCE17E	03627	04565	05769	04565	05769	01069	00355	00355	00000	03000	00000	65535	00000	65535	65535	6553
CD212 Lambda prob Sport 🛛 🔳 16x16	OCE19E	65535	00016	00200	00400	00600	00800	01000	01200	01400	01600	01800	02000	02200	02400	02800	0340
CD922 Nm to IQ conversion III 16x16	0CE1BE	04000	06000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	0000
CETEC Ist Gear 2x1	OCE1DE	00000	00000	00000	05000	00002	00635	04000	10000	10000	01250	01500	01750	02000	02250	02500	0275
CE268 3rd Gear 2x1	0CE1FE	03000	03500	03750	04000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	1000
CE2A6 4th Gear 2x1	0CE21E	10000	10000	10000	00002	00635	04000	10000	10000	01250	01500	01750	02000	02250	02500	02750	0300
CE2E4 5th Gear 2x1 CE322 6th Gear 2x1	0CE23E	03500	03750	04000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	1000
CE360 Reverse Gear 2x1	0CE25E	10000			00635												
CF0C2 IQ Limit by RPM - 12x1	0CE27E				10000												•
CFOFE IQ Limit -20/120 IAT 8x8	0CE29E				04000												
D0308 Start of Injection 1 = 16x16 D054C Start of Injection 2 = 16x16 -	Text 2d/3		00002	000000	01000	10000	10000	01230		01150	02000	02230	02000	02750		0000	
D034C Statt of Injection 2		_													_		

Press F1 to receive help.

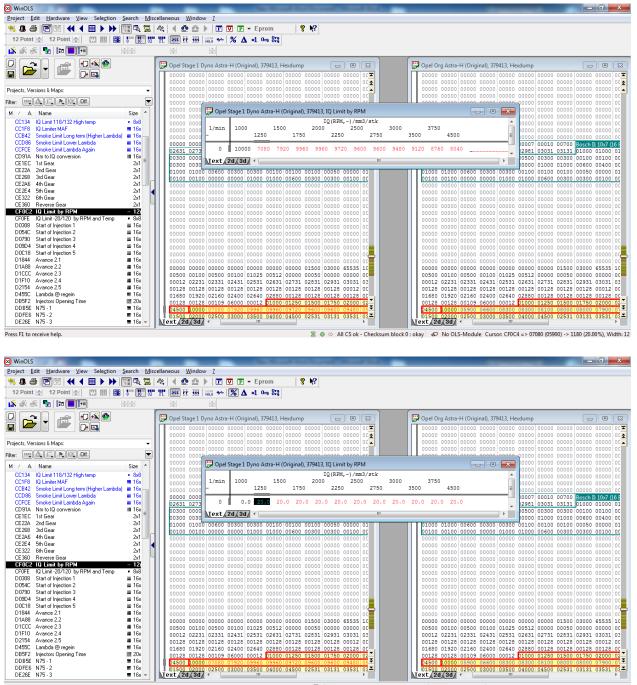

🕱 🐵 🗢 All CS ok - Checksum block 0 : okay 🛛 🛷 No OLS-Module Cursor: CE1EC => 07400 (00000) -> 7400 (100.00%), Width: 2

Fiat Chroma Gear Dependent Torque Limiter. Here you can see normal map start with dimensions 00015 00000 *****

:	at Cro	ma (Origina	al), 3836	85, TLG	15x1 * (I	Parallel-	Group #	2)										
									-	(-)/-									
	-	0		10			00		00		00		00		00	-	000		
:			40	0	12	50	17	50	22	250	27	50	35	00	43	500			
		100	00 10	000 10	000 10	000 10	000 10	000 10	000 10	000 10	000 10	000 10	000 10	000 10	000 10	000 1	0000		
	III	100	00 10	000 10	000 10	000 10	000 10	000	1000	1000 10	000 10	000 10	000 10	000 10	000 10	1000 1			
Iex	t/20	1 <u>∕</u> /30	1/ 📢										-111						
E4A0	000	48.0	1015	00020	00053	00066	00082	00103	00130	00164	00208	00263	00330	00409	00499	00595	00643		
E4C0																	03331		
E4E0																	04231		 .
E500	043	31 0	4431	04531	04631	04731	00048	00048	00048	00048	65535	00000	65535	00000	06000	06000	04608		
E520	000	00 0	9830	00000	09830	00400	02231	02231	03231	00004	03231	00258	00001	00001	00515	01029	01536		
E540	652	80 0	1394	00749	00475	00350	00272	00224	01360	00000	01100	00590	01210	01850	01290	02020	02850		
E560	021	00 0	2920	03760	02960	03850	04680	03980	04790	05560	04930	32767	00000	00000	00420	00002	00000		- I
E580	030	00 0	0000	65535	00000	65535	65535	65535	65535	00016	00200	00400	00600	00800	01000	01200	01400		
E5A0													_				00000		
E5C0													-			-	01250		
E5E0																	10000	l	····
E600		_															01500		
E620 E640																	10000		
E660																	02000		
E680																	02250		
E6A0																	10000		
E6C0																	02500		
E6E0																	10000		
E700	100	00 1	0000	10000	10000	10000	10000	00015	00000	00400	01250	01500	01750	02000	02250	02500	02750		
E720	030	00 0	3250	03500	04000	04500	05000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
E740	100	00 1	0000	10000	10000	10000	00015	00000	00400	01250	01500	01750	02000	02250	02500	02750	03000		
E760	032	50 0	3500	04000	04500	05000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
E780	_																00000		
E7A0																	00000		
E7C0	655	35 0	0000	65535						65535				65535			00000		


6. IQ limit by Coolant Temperature

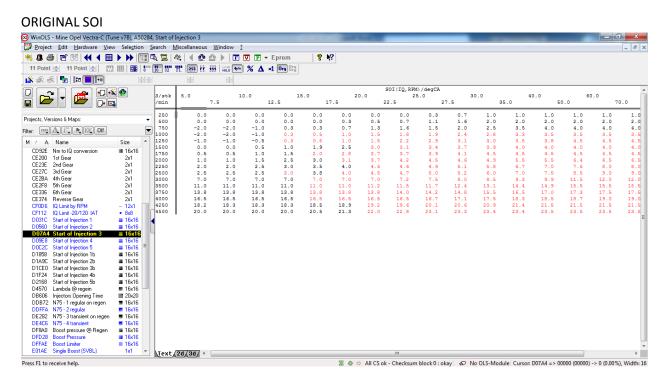
I this map limit IQ based on the Engine Coolant Temp. I just follow pro tuners work and increasing the values by 15%, leaving last columns stock for safety margin.


7. IQ limit by Fuel Temperature

I this map limit IQ based on the Fuel Temperature. I follow pro tuners work and increasing the values by 15%, leaving last three columns stock for safety margin. In my logs fuel T is always less than 40C (about 5C – 37C).

8. IQ limit by RPM

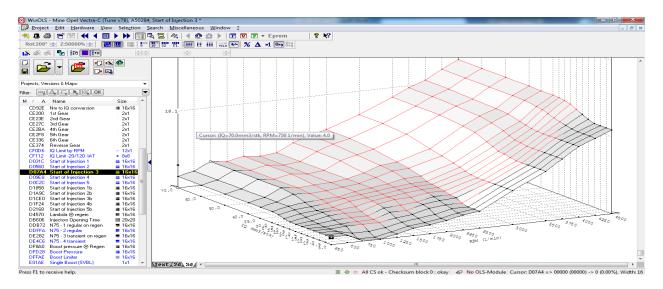
I this map limit IQ based on the engine RPM. I follow pro tuners work and increasing the values by 15%, leaving last columns stock for safety margin.

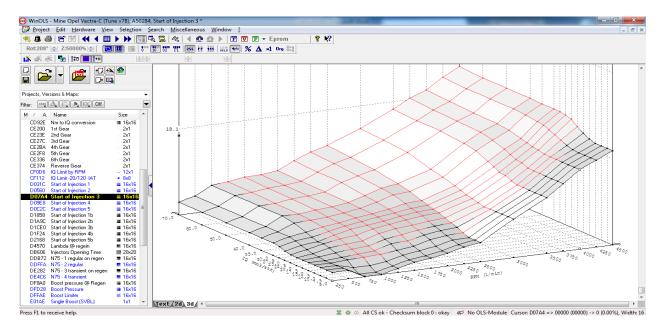

Press F1 to receive help.

🕱 🐟 All CS ok - Checksum block 0 : okay 🛷 No OLS-Module Cursor: CF0C4 => 00020 (00000) -> 20 (100.00%), Width: 12

9. Start Of Injection map:

Pro tuner **left this map stock (better do the same)**. I advanced mine all over the IQ and revolution range by 2.0deg on steps by 0.5 deg at a time. "Luckily" I did blow out the O-ring of one of my injectors. So I go back to + 0.2/+1.0 deg rounding the 3D graph. Highest increase fills up the holes @1500rpm out of EGR working area.


You should bear in mind that switching off EGR increase speed of combustion, increasing boost advance start of combustion, and increasing rail pressure will make injecting higher quantity BTDC. So finally better stay on safe side and do not play to much with SOI. Comparing mine SOI to Astra w/o DPF I found out, my car running retarded with delta (-1 to -2) in low IQ and RPMs. Astra got also higher boost and rail pressure, but less EGR at this range.


TUNED

Project Edit Hardware Vie	w Selectio	n Sear	rch Mis	cellaneou	Window	?													- 6
L 🗿 🖻 🐨 🕅 📢 🖣 🖩		TT .	5 20	. 🔺 🏟		F V P	- Enror	n 1	8 №										
									• ···										
			32 F1		111 LOHI HILO		×1 Org	Ōrĝ											
🕺 🛋 🕷 🍢 🕷 🔺 🦷		A A V		A V	A. Y														
	× 🏠										SOI(IQ, P	RPM)/degCA							
			/stk min	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	3 7.5	0.0	5.0	0.0	0.0	60.0	70.0
	-4	L L			7.5		12.5		17.5		22.0		7.5		5.0		0.0		/0.0
iects, Versions & Maps:			250	0.0				.0 0.		.0 0.1			0.0	0.0	0.0	0.0	0.0	0.0	0.
		- 1	500 750	0.0				.0 0.		.0 0.1		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0.
r: ••••••••••••••••••••••••••••••••••••			000	0.0				.1 0.		.1 0.1		0.0	0.5	0.5	0.4	0.4	0.6	0.0	0.
/ A, Name	Size		250	0.0				.2 0.		.5 0.1		0.5	0.5	0.8	0.5	0.6	0.1	0.2	0
CD92E Nm to IQ conversion	■ 16×16		500	0.0				.0 0.		.0 0.			0.5	0.5	0.5	0.7	0.8	0.9	1
CE200 1st Gear	2x1		750	0.0				.0 0.		.2 0.3			0.6	0.5	0.6	0.7	0.8	0.9	1
CE23E 2nd Gear	2x1		250	0.0				.0 0.		.0 0.1		0.5	0.6	0.5	0.5	0.8	0.5	0.5	0
CE27C 3rd Gear	· 2x1		500	0.0				.2 0.		.3 0.3			0.8	0.5	0.5	0.5	0.5	0.5	
E2BA 4th Gear	2x1	3(000	0.0	0.	0.0) 0	.0 0.	1 0	.1 0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0
E2F8 5th Gear	· 2x1		500	0.0				.0 0.		.1 0.3			0.5	0.5	0.5	0.5	0.5	0.5	0
E336 6th Gear	2x1		750	0.0				.0 0.		.1 0.1			0.5	0.5	0.5	0.5	0.5	0.5	0
CE374 Reverse Gear	2x1		250	0.0				.0 0.		.1 0.3		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0
CF0D6 IQ Limit by RPM CF112 IQ Limit -20/120 IAT	- 12x1 • 8x8		500	0.0				.0 0.		.0 0.3			0.5	0.5	0.5	0.5	0.5	0.5	0.
D031C Start of Injection 1	= 16x16																		
D0560 Start of Injection 2	■ 16x16																		
D07A4 Start of Injection 3	16x16	4																	
D09E8 Start of Injection 4	16x16																		
D0C2C Start of Injection 5	🔳 16x16	=																	
D1858 Start of Injection 1b	IGx16 🔳																		
D1A9C Start of Injection 2b	■ 16x16																		
D1CE0 Start of Injection 3b	16x16																		
01F24 Start of Injection 4b	16x16																		
) 2168 Start of Injection 5b) 4570 Lamb da @ regein	■ 16×16 ■ 16×16																		
) 4570 Lambda @ regein) 8606 Injectors Opening Time	20x20																		
DB72 N75 - 1 regular on regen	■ 16x16																		
DFFA N75 - 2 regular	= 16x16																		
DE282 N75 - 3 transient on regen	■ 16x16																		
DE4C6 N75 - 4 transient	16x16																		
OF8A0 Boost pressure @ Regen	16x16																		
OFD28 Boost Pressure	16x16																		
DFFAE Boost Limiter	🔳 16x16																		
E01AE Single Boost (SVBL)	 1x1 	-		d/3d/ <															

ORIGINAL IN 3D

UNED IN 3D

Final version of my SOI3 ("delta"-difference from org) coping low IQ and RPM range from Astra w/o DPF.

							S	OI(IQ,RPM)/degCA							
m3/stk	5.0	10	.0	15	.0	20	.0	25	.0	30	.0	40	.0	60	.0	
1/min	7	.5	12	2.5	17	.5	22	.5	27	1.5	35	.0	50	.0	70	0.0
250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
750	1.3	1.5	0.6	0.0	0.4	0.2	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1000	1.5	1.7	1.0	0.2	0.5	0.5	0.4	0.5	0.7	0.5	0.5	0.4	0.4	0.6	0.7	0.8
1250	0.8	1.3	1.2	0.8	1.0	1.1	0.8	0.5	0.5	0.5	0.8	0.5	0.6	0.1	0.2	0.4
1500	0.3	0.8	0.7	0.7	0.2	0.1	0.2	0.5	0.5	0.5	0.5	0.5	0.7	0.8	0.9	1.0
1750	0.3	1.0	0.7	0.6	0.6	0.3	0.2	0.5	0.5	0.6	0.5	0.6	0.7	0.8	0.9	1.0
2000	0.4	1.1	0.9	0.2	0.1	0.5	0.4	0.5	0.5	0.6	0.6	0.5	0.8	0.5	0.5	0.8
2250	0.1	0.6	0.6	0.4	0.4	0.1	0.1	0.5	0.5	0.7	0.5	0.5	0.5	0.5	0.5	0.8
2500	0.3	1.0	1.2	1.2	0.5	0.6	0.6	0.8	1.1	1.2	0.9	0.5	0.5	0.5	0.5	0.8
3000	0.0	0.0	0.0	0.0	0.1	0.1	0.4	0.5	0.8	0.8	0.7	0.6	0.6	0.5	0.5	0.8
3500	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.8
3750	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.8
4000	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.8
4250	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.8
4500	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.8

10. Injector opening time (Duration map):

The duration maps may need to be changed also. Otherwise the duration map will limit the injected quantity at the highest possible axis. So we need to change the axis value from 80mg/stroke to 100mg/stroke in this case. And extrapolate injector opening time for the new IQ axis. You can see in the example how pro tuner did it. However you can choose different values as it the opening time not rising in progression.

It is visible that when stock injector opening time is never more than 3000 micro sec, and got same values for lowest rail pressure and IQ 60 - 80mg/stroke(for all 1.9DTH engines including Opel, Fiat and SAAB). So maybe it is not advisable to go over those timing, even so I don't think the car will ever operate at that CRS pressure/IQ/RPM range.

1 🗿 📑		1 🗐 🗟 🕱	24	° ≙ ►	F	V P	- Epro	m	8	N?															
Point 🚔 1	2 Point 🚔 🔛 🔢		" "I" (255)	E 111 H	H +-	%Δ	×1 0n	9 813 9 13																	
š š 🖡			(A) (V)		A Y																				
-			00 00000	00000	00000	00000		00000	00000	00000	00000	00000	00 🚖		00	00000	00000	00000	00000	00000	00000	00000	00000	00000 000	000
cts, Versions & I	Maps:	•		00000																				00000 000	
щДi,	I ▶ KK Off	-	00 0000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00			00000	00000	00000	00000	00000	00000	00000	00000	00000 000	000
A. Name		Size 🔺										00000	ac d		0.0	00000	00000	00000	00000	00000	00000	00000		ممما مممم	
E1EC 1st Gea		- 2x1	Der Opers	tage 1 Dyr	no Astra	-H (Orig	inal), 379	941 <i>3</i> , Inj	ectors C	pening	Lime														ж
E22A 2nd Ge		· 2x1												Pressur											-
268 3rd Gea		2x1	mg/st	0		100		200		300		400		600		800		1500		3000		6000			11
2A6 4th Gea		· 2x1	Bar		20		150		250		350		500		700		1000		2000		4000		10000		
2E4 5th Gea 322 6th Gea		2x1	500	0	0	0	0	0	0	0	0	0	0	0			0	0	0			0	0		-
322 6th Gea 360 Revers		2x1	500 1200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		11
	by RPM	- 12x =	1210	0	454	569	649	720	784	850	904	957	1053	1126	1195	1253	1351	1586	1806	2234	2659	3000	3750		11
	- 20/120 by RPM and Temp	• 8x8	2000	0	353	443	505	560	610	661	703	745	819	876	930	975	1051	1233	1405	1738	2059	2731	3750		11
	Injection 1	■ 16x	2500	0	316	396	451	501	545	592	629	666	733	783	831	872	940	1103	1256	1554	1850	2443	3680		11
	Injection 2	= 16x	3000	0	288	362	412	457	498	540	574	608	669	715	759	796	858	1007	1147	1419	1689	2230	3441		11
	Injection 3	= 16x	4000	0	271	325	358	390	422	453	479	505	543	579	612	642	694	816	925	1160	1401	1883	2966		11
	Injection 4	= 16x	6000	0	234	287	310	327	348	371	389	406	439	470	498	520	561	643	733	897	1061	1445	2328		11
	Injection 5	= 16x	8000	ő	232	272	291	304	318	333	345	359	391	419	443	466	506	571	636	770	909	1208	1899		11
1844 Avance		= 16x	10000	ő	248	270	283	294	305	315	323	333	355	376	397	416	452	524	585	694	808	1044	1566		5
1A88 Avance		= 16x	12000	0	245	267	280	291	302	312	320	328	344	363	381	399	426	491	545	648	747	958	1384		11
1CCC Avance		= 16x	13000	0	243	265	278	289	300	310	317	325	341	359	375	392	423	478	531	629	718	916	1361		11
1F10 Avance		■ 16×	14000	0	241	263	276	287	298	308	314	322	338	355	371	385	412	461	511	612	695	884	1323		11
2154 Avance		= 16x	15000	ő	240	262	275	286	296	305	312	319	335	351	368	378	402	446	496	596	675	854	1273		11
455C Lambda		= 16x	16000	ő	239	261	274	285	294	303	309	317	333	347	365	376	395	439	487	577	655	826	1231		
	ors Opening Time	20	18000	ō	225	246	258	268	277	286	291	299	314	327	344	354	372	414	459	544	618	783	1147		11
DB5E N75-1		16×	18010	0	225	246	258	268	277	286	291	299	314	327	345	354	372	414	459	544	618	783	1147		11
DFE6 N75-2		16x	18020	0	225	246	258	268	277	286	291	299	314	327	345	354	372	414	459	544	618	783	1147		
26E N75-3		16x	18030	0	225	246	258	268	277	286	291	299	314	327	345	354	372	414	459	544	618	783	1147		
4B2 N75-4		16x	18040	0	225	246	258	268	277	286	291	299	314	327	345	354	372	414	459	544	618	783	1147		1
88C Boost p	ressure @ Regen	16x																							1
D14 Boost F		■ 16×																							
FF9A Boost L	imiter	= 16x	Iext 2	d∡3d∕ •	C																			+	E F
019A Single B		· 1x1												_	1 100							00020	00400		
2E9A Invidriv	vers wish	∎ 8x1 -	Iext 2	d/3d/ •	(III				•		Τe	xt/20	1/3d/	4							

WinOLS		-	-		-													-	-	-				
oject <u>E</u> dit <u>H</u> ardware <u>V</u> iew Sele <u>c</u> tion			ıs <u>W</u> indov	N <u>?</u>																				
J 🚨 🗁 ा 🖼 🖬 🖬 🖬 🖊 🖊	1 🗐 🗟 🧏	s 🔩 🖣	🏠 🖆) E	V P	▼ Epre	m	- 11	? №?															
12 Point 🍧 12 Point 🚔 🔛 🔠		2 11 2	5 ff 111		- % 🛛	x 1 0r	9 8rg																	
i 🕷 🚿 🍢 🎶 🔳 🔜		A. Y																						
		📴 Ор	el Stage 1 D	yno Ast	ra-H (Ori	ginal), 37	9413, He	exdum	р			8			🖁 Opel ()rg Astra	-H (Origi	inal), 379	9413, He	exdump				
) 💆 🕺 🔛 🕞 🖬																							00000 0	
jects, Versions & Maps:	-	00 00	000 00000	00000	00000	00000	00000	00000	00000	00000	00000	00		0	0 0000	00000	00000	00000	00000	00000	00000	00000	00000 0	0000
III A II N KK Off																							00000 0	
A. Name	Size 🔺		مممامممه				00000			00000		00			0.0000		00000	00000	00000	ممممما	00000		00000	
CE1EC 1st Gear	2x1	C ⇒ Op	el Stage 1 D	yno Ast	ra-H (On	ginal), 37	941 <i>3</i> , Inj	ectors	Opening	g lime												-	- 0	×
CE22A 2nd Gear	· 2x1											Q,Rail		ure)/-										-
CE268 3rd Gear CE2A6 4th Gear	2x1 2x1	mg/s Bar	τ 0	20	100	150	200	250	300	350	400	500	600	700	800	1000	1500	2000	3000	4000	6000	10000		
CE2E4 5th Gear	2x1	Dat		20		150		250		350		500		700		1000		2000		4000		10000		
CE322 6th Gear	2x1	500			0	0	0	0	0	0) (0	0	0	0	0	0	0		
CE360 Reverse Gear	2x1	1200			, o	ő	ő	0		0	, o					ő	ő	ő	ő	0	ő	ő		
CF0C2 IQ Limit by RPM	- 12x =	1210			0 0	ő	ő	ő		ő	ŏ					ŏ	ő	ő	ő	ő	ŏ	750		
CF0FE IQ Limit-20/120 by RPM and Temp	• 8x8	2000			5 0	ŏ	ő	ő		0						ŏ	ő	ő	ŏ	ő	ŏ	750		
D0308 Start of Injection 1	= 16x	2500				ŏ	ŏ	ő		ő					· ·	ŏ	ŏ	ŏ	ŏ	ő	ŏ	680		
D054C Start of Injection 2	= 16x	3000			, o	ő	ŏ	ő		0						ő	ő	ő	ő	ő	ő	670		
D034C Start of Injection 2 D0790 Start of Injection 3	= 16x	4000				0	0	0		0	-					ő	0	ő	ő	0	ő	602		
D0750 Start of Injection 3 D09D4 Start of Injection 4	= 16x	6000				0	0	0		0						0	0	0	0	0	0	493		
D0004 Start of Injection 4 D0C18 Start of Injection 5	= 16x	8000				0	0	0		0						0	0	0	0	0	0	384		
	16x	10000				0	0	0		0							0	0	0	0	0	287		=
						0	0	0		0						0	0	0	0	0	0	287		
D1A88 Avance 2.2	■ 16×	12000				0		0		0						0	-	0						
D1CCC Avance 2.3	16x	13000				-	0									-	0	-	0	0	0	244		
D1F10 Avance 2.4	16x	14000				0	0	0		0						0	0	0	0	0	0	241		
D2154 Avance 2.5	16x	15000				0	0	0		0						0	0	0	0	0	0	230		
D455C Lambda @ regein	■ 16×	16000				0	0	0		0						0	0	0	0	0	0	222		
DB5F2 Injectors Opening Time	20:	18000				0	0	0		0						0	0	0	0	0	0	199		
DDB5E N75-1	■ 16x	18010				0	0	٥		0						0	0	0	0	0	0	199		
DDFE6 N75-2	■ 16×	18020				0	0	0		0						0	0	0	0	0	0	199		
DE26E N75-3	16x	18030				0	0	0		0						0	0	0	0	0	0	199		
DE4B2 N75-4	16×	18040) (0 0	0	0	0	0	0	0) () () (0	0	0	0	0	0	199		
DF88C Boost pressure @ Regen	🔳 16x																							
DFD14 Boost Pressure	🔳 16x																							*
DFF9A Boost Limiter	16x	Iext	2d/3d/	•																				F
E019A Single Boost (SVBL)	- 1x1																							
E2E9A Inv drivers wish	∎ 8x1 –	Iext	2d/3d/	1				III				F		Ň	[ext /	d/3d/	4				111			
ss F1 to receive help.		_		_													o OLS-M							

11. CRS Rail Pressure:

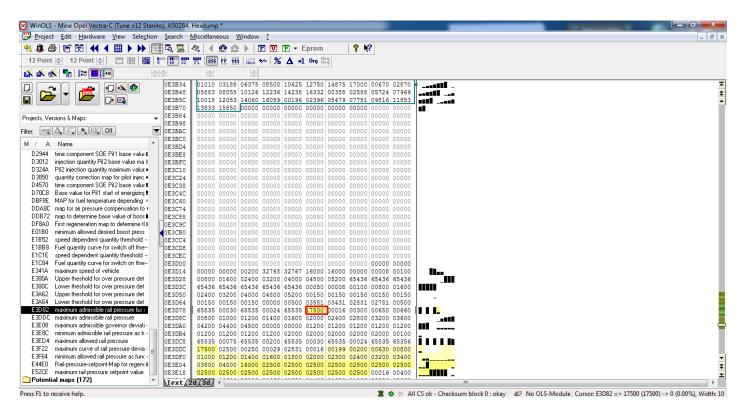
A positive effect of increased fuel pressure... is that forcing the fuel through the same injector at a higher pressure tends to improve fuel atomization. This will tend to improve fuel distribution and combustion efficiency, and may contribute to improved fuel economy. The benefits of higher pressure are accompanied by some additional concerns, the main one being safety. With fuel lines and connections being subjected to higher pressure, there naturally is an increased risk of leaks or outright failure. To ensure reliability, the standard Bosch parts are rated for pressures well above the normal operating range...

The pro tuner increased all pressure related maps using flat Delta (100bar) over the whole revolution range, same story here. In the beginning (to stay safe) I used +6% (max 1696bar) and extend this all over (1000rpm) the map even for low IQ values.

Now I changed my mind. At certain point of back pressure, efficiency of most pumps (especially centrifugal) will drop rapidly. After this point increase of RPMs will only generate more heat, however without increase of the flow rate. This fluid/gas passing through is used also to cool the pump.

Another change of mind[©]. Looks like increase of CRP is used to reduce NOx(O2 rich zones) and this cost higher BSFC. So now I use it same as the pro tuner only at high IQ, to advance end of injection.

Mine Vectra difference in % and difference in "D"


WinOLS - Mine Opel Vectra-C (Tun	e v10), A50284	4, Rail Pressu	re normal								-						-	-				
Project Edit Hardware View	Selection	Search Mis	cellaneous	Window	N <u>?</u>																	-
👯 🚨 🖨 🖻 🕅 🖬 🖬 🔳	► ► 🔚	یہ 🔄 🔊	. 🗐 🏩	<u>4</u> •	r v	P - E	prom	1	? №?	13 Po	int 🚔	13 Point				16 32	F1. 255) EE 333	HILO W	- % 🛆	×1 0rg	Brg A
	*									ressure												
- 🖻 - 🖻 📴		mm3 1/min	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0	35.0	40.0	50.0	60.0	70.0				
rojects, Versions & Maps:	•	250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
lter:	•	500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
M / A. Name	Size ^	750 1000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
D0C2C Start of Injection 5	5ize -	1250	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
D1858 Start of Injection 15	■ 16x16	1500	12.0	11.7	11.2	10.6	9.9	9.5	9.3	8.6	8.4	8.6	9.0	10.1	10.7	9.6	9.6	9.6				
D1A9C Start of Injection 2b	16×16	1750	10.1	9.3	9.2	8.9	8.3	7.9	8.2	7.7	7.9	8.0	8.4	9.3	9.9	9.0	8.8	8.7				
D1CE0 Start of Injection 3b	■ 16×16	2000	8.5	8.4	7.9	7.8	7.5	7.2	7.4	7.5	7.5	7.8	8.2	9.2	9.5	8.4	8.3	8.0				
D1F24 Start of Injection 4b	16×16	2250	7.9	7.7	7.2	7.5	6.9	6.8	6.9	6.8	6.9	7.2	7.2	8.1	8.6	7.8	7.5	7.4				
D2168 Start of Injection 5b D4570 Lambda @ regein	■ 16×16 ■ 16×16	2500	7.8	7.6	7.1	7.3	6.9 6.3	6.8 6.3	6.6	6.4 6.4	6.8 6.6	6.5 6.7	6.8 7.1	7.8	8.5	7.4	7.0	6.9 6.5				
DB606 Injectors Opening Time	20x20	3000	6.3	6.4	6.1	6.2	6.2	6.3	6.5	6.6	6.8	6.9	7.0	7.4	7.8	6.7	6.3	6.3				
DDB72 N75 1 regular on regen	■ 16×16	3250	6.2	6.3	6.1	6.2	6.2	6.3	6.4	6.4	6.6	6.7	6.8	7.2	7.5	6.5	6.3	6.3				
DDFFA N75 2 regular	■ 16x16	3500	6.1	6.2	6.1	6.1	6.1	6.2	6.2	6.3	6.5	6.5	6.6	7.0	7.2	6.3	6.3	6.3				
DE282 N75 - 3 transient on regen	■ 16×16	4000	6.0	6.1	6.0	6.1	6.0	6.0	6.1	6.1	6.2	6.2	6.3	6.5	6.8	6.0	6.3	6.3				
DE4C6 N75 4 transient	■ 16x16	4500	6.0	6.1	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.3	6.3				
DF8A0 Boost pressure @ Regen DFD28 Boost Pressure	16x16																					
DFFAE Boost Limiter	16x16	4																				
E01AE Single Boost (SVBL)	1x1																					
E1B52 EGR hysteresis																						
E1BB8 EGR hysteresis	25x1																					
E1C1E EGR hysteresis E2EAE Inv drivers wish																						
E2EAE Inv drivers wish E341A Limite Vmax 210km/H	1x1																					
E3E08 SVFPL	1x1																					
E3F22 SVFPL	1x1																					
E44E0 Rail Pressure on regen	a 16x16																					
E49A8 Rail Pressure normal	16x16																					
E4D42 Rail Pressure Temp limiter E4DF0 Rail Pressure Limit Fct RPM	• 8x8																					
AOHt Logic: "Add On Heater Lo																						
C5D1C idle speed when heater 1 is o																						
C5D1E Switch to select air temperatu																						
C5D20 Minimal inactive time of the a	c · 1x1																					
C5D22 Maximal threshold of the air te	e - 1x1																					
Potential maps (172)	-	Text 20	d∡3d/ ∢⊺																			

Press F1 to receive help. 🕱 ♦ 🔅 All CS ok - Checksum block 0: okay 🛷 No OLS-Module | Cursor: E4ACA => 00007 (00000) >> 7 (100.00%), Width: 15

🞯 WinOLS - Mine Opel Vectra-C (Tune v10), A502					_		-			-						-					• ×
Project Edit Hardware View Selection	Search Mis	cellaneous	Window	w <u>?</u>																	- 5
: \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$] 🗟 🧧 💐	i 🖣 🏚 🗹		r v	P -	prom	1	8 №	13 Po	int 🚔 👘	13 Point	÷ C	51 888 8	1	16 32	F1. 255	ff 333	HILO **	· % 🚺	×1 0m	8rg 👫 🕯
										(IQ,RP											
	mm3	5.0		10.0		15.0		20.0		25.0		30.0		40.0		60.0					
	1/min	7	.5		12.5		17.5		22.5		27.5		35.0		50.0		70.0				
Projects, Versions & Maps:	250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	500	0	ō	0	ō	0	0	ō	ō	0	ō	0	0	0	0	ō	0				
Filter:	750	0	ō	0	ō	0	0	ō	ō	ō	ō	ō	ō	0	ō	ō	0				
M / A. Name Size ^	1000	0	0	0	0	0	0	0	ō	0	0	0	0	ō	0	ō	0				
D0C2C Start of Injection 5 Infection 5	1250	18	18	18	19	21	24	28	30	36	38	41	46	50	55	55	55				
D1858 Start of Injection 5 16x16	1500	39	41	42	45	48	52	56	60	65	69	74	85	96	96	100	100				
D1A9C Start of Injection 1D I 16x16	1750	39	41	42	45	48	52	56	60	65	69	74	85	96	96	100	100				
D1CE0 Start of Injection 3b I 16x16	2000	39	41	42	45	48	52	56	60	65	69	74	85	96	96	100	100				
D1F24 Start of Injection 4b I 16x16	2250	39	41	42	45	48	52	56	60	65	69	74	85	96	96	100	100				
D2168 Start of Injection 5b III 16x16	2500	39	41	42	45	48	52	56	60	65	69	74	85	96	96	100	100				
D4570 Lambda @ regein 🔳 16x16	2750	39	41	42	45	48	52	56	60	65	69	74	85	96	96	100	100				
DB606 Injectors Opening Time 🔳 20x20	3000	39	41	42	45	48	52	56	60	65	69	74	85	96	96	100	100				
DDB72 N75 - 1 regular on regen 🔳 16x16	3250	39	41	42	45	48	52	56	60	65	69	74	85	96	96	100	100				
DDFFA N75 · 2 regular 16x16	3500	39	41	42	45	48	52	56	60	65	69	74	85	96	96	100	100				
DE282 N75 · 3 transient on regen 🔳 16x16	4000	39	41	42	45	48	52	56	60	65	69	74	85	96	96	100	100				
DE4C6 N75 · 4 transient I 16x16	4500	39	41	42	45	48	52	56	60	65	69	74	85	96	96	100	100				
DF8A0 Boost pressure @ Regen 🛛 🖬 16x16																					
DFD28 Boost Pressure I 16x16	4																				
DFFAE Boost Limiter = 16x16																					
E01AE Single Boost (SVBL) 1x1																					
E1B52 EGR hysteresis																					
E1BB8 EGR hysteresis25x1 E1C1E EGR hysteresis25x1																					
E2EAE Invidivers wish 8x13																					
E341A Limite Vmax 210km/H 1x1																					
E3E08 SVFPL 1x1																					
E3F22 SVFPL 1x1																					
E44E0 Rail Pressure on regen 🔳 16x16																					
E49A8 Rail Pressure normal 🔳 16x16																					
E4D42 Rail Pressure Temp limiter																					
E4DF0 Rail Pressure Limit Fct RPM																					
AOHt_Logic: "Add On Heater Logic"																					
C5D1C idle speed when heater 1 is or < 1x1																					
C5D1E Switch to select air temperatur 1x1																					
C5D20 Minimal inactive time of the ac 1x1																					
C5D22 Maximal threshold of the air te 1x1																					
Potential maps (172)	Text 2	d 🖁 3d 🖉 < 📄																			
Press F1 to receive help.	- <u>ma</u>									Sale Ch	a a lua sua a la	la els 0 s e			Madul		FAACA -	> 00041	(00000)	41 (100.0	0%), Width: 1
Press F1 to receive help.								- A 🗘	W All C	s ok - Ch	ecksum b	IUCKU:C	Kay a	NO UL	s-woaule	Curson	E4ACA =	× 00041	(00000) -:	• #I (100.0	0 %), wiath: .

12. SV Rail Pressure:

This value limits the absolute common rail pressure. This value can be found behind the rail pressure map. There is 3 maps like this. No need to touch them. They are set to 1750bar.

Air related maps

13. EGR vs MAF map:

To prevent clogged intake and avoid future (Swirl flaps, MAP, EGR) problems the EGR map can be simply disabled using switch. However some tuners report less fuel consumption while leaving EGR working but reduced i.e increase allowed MAF. To reduce EGR and allow more air intake we need to increase the allowed MAF in mg/stroke. Do not go over the highest value, in this case it is 1200mg/stroke. On EDC15 this map is used to switch off DPF by setting all values equal to the highest one. Usually same as last column. The pro tuner did not switch of the EGR neither touch this map.

When reading data from the ECU log, the mass air flow is reported in kg per hour but in hexdump we work in mg per stroke. Converting one value to the other is quite simple:

One full cylinder filling is 1.910 ltr : 4 cyl = 0.4775 liter. Air is about 1290mg per liter.

So we can calculate 0.4775 ltr/stroke * 1290 mg/ltr= 615.975 mg/stroke. However, the cylinder is not fully filled as it has to suck in the air in a limited amount of time (and may get EGR). Therefore the value is a lower. If the turbo would be really working at idle, the air flow could be higher than 616 mg/stroke.

At 900 RPM a 4 cylinder 4 stroke engine makes 900 RPM * 2 strokes/revolution * 60 minutes in one hour = 108,000 strokes. So if the ECU reads 616 mg/stroke at idle, it equals to 108,000 * 616e-6 = 66.53 kg/hour air flow.

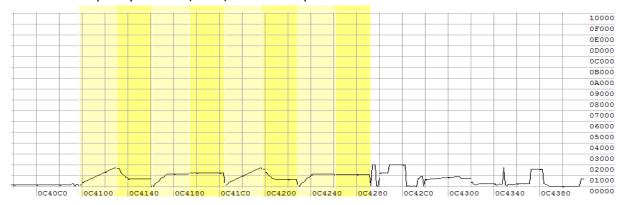
WinOLS -	Mine vectra w/o DPF, EGR	l off (Original !	!!! with DP	F !!!), A502	284, EGR	l vs MAF								-					_	 _	
<u>P</u> roject	<u>E</u> dit <u>H</u> ardware <u>V</u> iew	Selection S	earch M	liscellaneo	us <u>W</u> ir	ndow	2														- 1
1 🗐 🖉) 🖻 🕅 ┥ 4 🖽))) III III III III III III III III III	ð, 🔁 🖉	🛛 🖌 🤹	ا ک 🖞) F	V P	▼ Ер	rom		? №?										
11 Point	🚔 11 Point 🚔 🔣		16 32	255	F 111		1% L	×1 (Org Brg												
					te aaa j																
		A									PM) /mg/										
		21	mm3	5	10	13	1 15	.8	20	23	25	28	30	33	35	38	43	48	50		
	'' 📂 📭		<u> </u>		10		19		20		25		30		35		43		50		
ianto Vers	ions & Maps:	_	750	600	600	625	675	760	825	905	1000	1050	1100	1150	1200	1200	1200		1200		
	·	_	830	260	270	280	330	380	485	565	685	795	885	1040	1150	1200	1200	1200	1200		
: 📖	▲ (T, P, KK) Off		1000	260 280	270 285	275 290	320 310	370 355	425 410	485 435	570 510	661 580	780 675	940 810	1075 920	1200 1010	1200 1095	1200 1200	1200 1200		
/ A	Name	Size 🔺	1500	280	285	290	340	375	380	420	440	465	570	630	700	750	805	835	1200		
	w/o DPF, EGR off (Origi		1750	285	290	315	330	365	400	420	450	480	520	565	615	673	730	800	1200		
e vectra lexdum		inai !!! ₩	2000	295	300	315	320	355	400	440	455	495	525	570	605	665	725	775	1200		
	P Hexdump		2250	355	375	390	410	420	440	470	470	525	540	580	605	660	720		1200		
My map:			2500	435 480	445 500	450 510	455 515	465 520	490 525	500 530	510 550	525 595	540 635	585 695	610 745	700 800	770 925	815 1200	1200 1200		
	- Drivers Wish	∎ 9x10	3000	510	532	580	645	700	730	745	760	785	820	895	985	1080	1120	1200	1200		
	Drivers Wish	∎ 9x10 <u>=</u>	3250	1200	1200	1200		1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200		
	Drivers Wish sport	■ 9x10	3500	1200	1200	1200		1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200		
	EGR Temperature	= 10x{	4250	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200		
	Rail pressure	■ 16x ⁻																			
	EGR vs MAF EGR Opening	= 16x																			
	EGR Switch 1	- 25x																			
	EGR Switch 2	- 25x																			
	EGR Switch 3	25x																			
C4260	EGR Switch 4	25x*																			
	friction torque	■ 16x1																			
	Torque Limiter	— 25x ⁻																			
	IQ Limit 118/132 Oil temp	• 8x8																			
	IQ Limiter IQ correction	■ 16x ⁻ ■ 8x8																			
	ra correction Smoke Limit Long term (Higher																				
	Smoke Limit Lower Lambda	■ 16x																			
	Smoke Limit Lambda Again	■ 16x1																			
D21E	Lambda prob Sport	■ 16x ⁻																			
	Nm to IQ conversion	■ 16x*																			
	1st Gear	2x1																			
	2nd Gear	· 2x1																			
	3rd Gear 4th Gear	· 2x1																			
CE2BA		2×1			_																
26210		281 *	<u>Iext</u>	2d/3d/	•	_	_	_		_	_		_	_			_			 	

💥 🚸 🜣 All CS ok - Checksum block 0 : okay 🛛 🎸 No OLS-Module Cursor: C2CC4 => 00530 (00530) -> 0 (0.00%), Width: 10

This map will show how much MAF your car used to get. So this can be used as guide for lowering the boost if closing or reducing EGR.

If you like to switch off EGR completely on EDC16, there is no need to touch the above map:

🕺 WinOLS - 0 Project Edit Hardware View Selection 戦 🚨 🖨 🖻 🕅 📢 🖣 🏢 🕨 💓 🛐 🗟 🖓 🖉 🗳 🌺 🖢 🕨 😰 💌 Eprom 2 N? 11 Point 🔄 11 Point 🔄 🔛 🔠 🔛 📰 🔡 🐨 🔢 💱 🏪 🗱 👫 👬 🖓 🗛 🗚 🗛 🖓 👫 🗟 🚿 | 🍢 | 🌬 🔳 D 📴 Opel Stage 1 Dyno Astra-H (Original), 379413, Hexdump


 Boyan Astra-H (Original), 379413, Hexdump

 00410 0 0C403E 0C405E 0C407E * Projects, Versions & Maps: 0C409E 0C40BE 0C40DE 0C40FE 0C411E 0C413E 0C415E 0C415E 0C417E 0C419E 0C41BE 0C41BE Filter: -Size ■ 8x13 ■ 8x13 ■ 8x13 ■ 10x8 ■ 16x14 ■ 16x8 ____ 0C41DE 0C41FE 0C421E 0C423E 0C425E 0C425E 0C427E 0C429E 0C428E C412E EGR Switch 1 -25x1 C41FA EGR Switch 3 C4260 EGR Switch 4 --- 25×1 --- 25×1 OC42DE P Opel Stage 1 Dyno Astra-H (Original), 379413, EGR Switch 1 - 0 ×
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 1000
 1750
 2250
 2750
 3250
 3750
 4250
 4750
 1/min 500 5500 5250 5750 6000 6250 2700 * * * Text 2d 3d < 00102 00102 00102 00102 00102 00102 00102 00102 00102 00100 00100 00102 Text 2d 3d 🕱 🐵 🜣 All CS ok - Checksum block 0 : okay 🛛 🜮 No OLS-Module Cursor: C4146 => 02700 (02700) -> 0 (0.00%), Width: 25 Press F1 to receive help.

Find the 4 switches shown on the screenshot below. They switch off EGR depending on IQ.

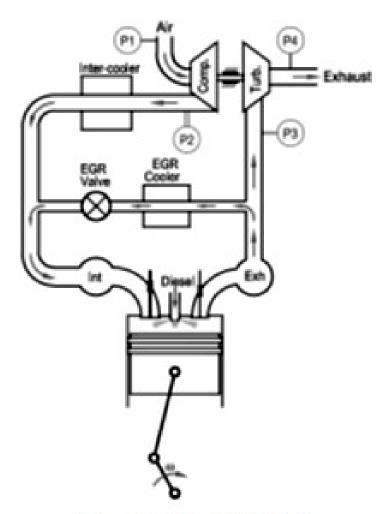
Or find EGR map (Desired air quantity MAF) - *in this file C2B98* Turn on 16bit, HiLo, decimal and 2D mode. Search after EGR map 4 hysteresis (25x1) like on the pictures below

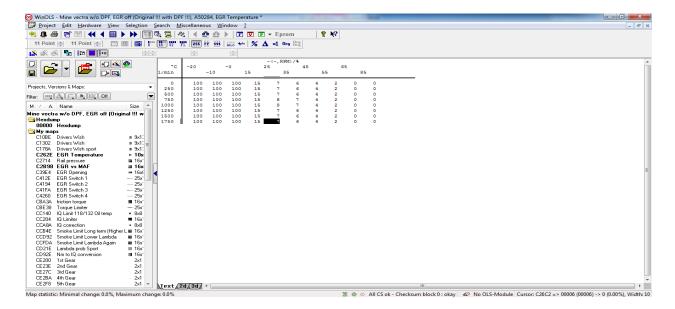
Fill these maps with 0 like on the pictures below

0C409C	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	+
0C40B8	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	
0C40D4	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	00410	
0C40F0	01000	01000	00000	00780	00750	00025	00500	01000	01500	01750	02000	02250	02500	02750	
0C410C	03000	03250	03500	03750	04000	04250	04500	04750	05000	05250	05500	05750	06000	06250	
0C4128	06500	06750	07000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	
0C4144	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	
0C4160	00025	00000	01000	01250	01500	02000	03000	03100	03400	04000	04500	04510	04520	04530	
0C417C	04540	04550	04560	04570	04580	04590	04600	04610	04620	04630	04640	04650	00000	00000	
0C4198	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	
0C41B4	00000	00000	00000	00000	00000	00000	00000	00000	00000	00025	00500	01000	01500	01750	
0C41D0	02000	02250	02500	02750	03000	03250	03500	03750	04000	04250	04500	04750	05000	05250	
0C41EC	05500	05750	06000	06250	06500	06750	07000	00000	00000	00000	00000	00000	00000	00000	
0C4208	00000	00000		00000		00000	00000	00000	00000	00000		00000		00000	
0C4224	00000	00000	00000	00000		00000			01500					04000	
0C4240	04500	04510	04520			04550			04580						
0C425C	04640	04650	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	
0C4278	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00085	
0C4294	08192				00000			04996					08192		
0C42B0	08192		08192		08192				08192						
0C42CC	00000	00001		00000	02901			03711					02630		
0C42E8		02780			02911			03081		03181			03331		
0C4304	03431	03481	03531	03581	03631	03681	03000	03000	03000	03000	03000	03000	03000	03000	∦ ≈ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

a) Looks like in those type of ERG arrangement N75 is used to create back pressure and divert EG flow to intake manifold.

"Even though a variety of measures can be taken, the leading contender is to use a variable geometry turbine (VGT) that can effectively provide the desired EGR driving pressure without substantially sacrificing the performance of the turbocharged engine. In such systems, the EGR control is closely tied to the VGT control"




Fig. 3. High pressure loop EGR.

- b) Turbine will spool a bit faster EG directed not to intake manifold but to the turbine side
- c) Turbine will spool a bit faster More air at intake manifold = more EG at exhaust manifold

14. EGR vs Temp map (Setpoint generation):

I want to make EGR working only at low Ambient Temperatures.

I`m not sure ho this map work!!! And planning some experiments and find is this correction is additively or multiplicative done.

The EGR-Valve is normaly working between 55°C and 100°C, upper it will be totally closed und lower 55°C - that's what it's difficult to explain because the map values are for internal settings and i don't know how it could be translated to values that i understand.

But i will show you in PSG16 what's the same like EDC16 !

My engine Y22DTR runs in idle about 850 1/min that makes approx. 520mg/Hub air mass without EGR.

The desired value of egr map - 850 1/min and 5 mg/Hub IE is 300mg/Hub air mass, so the EGR value opens so long till the measured air mass is about 300 mg/Hub.

Now comes the coolant temp. correction map - see egr.jpg

1272	a statement		enter en antere v	Luftmenge			1)/mg/Hub		STANDER I			
°C /min	-0.10	10.00	14.00	17.00	22.00	28.00	31.00 6	1 7.00	10.00	115.00		
750.00	500.00	250.00	100.00	50.00	50.00	25.00	0.00	0.00	0.00	250.00		
770.00	500.00	250.00	100.00	50.00	50.00	25.00	0.00	0.00	0.00	250.00		
850.00	500.00	250.00	100.00	50.00	50.00	25.00	0.00	0.00	0.00	250.00		
1000.00	500.00	250.00	100.00	50.00	50.00	25.00	0.00	0.00	0.00	250.00		
1250.00	500.00		100.00		50.00	25.00	0.00	0.00	0.00	250.00		
1500.00	500.00	250.00	100.00	50.00	50.00	25.00	0.00	0.00	0.00	250.00		
1750.00	500.00		100.00		50.00	25.00	0.00	0.00	0.00	250.00		
2000.00	500.00		100.00		50.00	25.00	0.00	0.00	0.00	250.00		
2500.00	500.00	250.00	100.00	50.00	50.00	25.00	0.00	0.00	0.00	250.00		
3000.00	500.00	250.00	100.00	50.00	50.00	25.00	0.00	0.00	0.00	250.00		
[ext/2d	/3d/ 4											
[ext/2d	<u>∕3d</u>											
<u>[ext/2d</u>	<u>√3d</u>											
<u>[ext∕2d</u>												
ext/2d								111		1153		
[ext/2d										11/7		
ext 20				<u> </u>						W		

850 1/min and 10°C coolant temperature = 250mg/Hub air mass to add to the desired EGR value = 300mg/Hub + 250mg/Hub =550mg/Hub air mass to measure

So idle without EGR = 520mg/Hub and corrected EGR value 550mg/Hub = -30mg/Hub = EGR CLOSED !!!

The only difficult thing is to hold this values close together otherwise you get MIL

Now you have to play with your car a little and find a good solution that will make this function you want but it will work !

I hope you understand the function of this map like i explained and you ignore my bad english.

btw: This was the way i was closing the egr in my y20dtl (EDC15M) zafira till i found a better way !

15. Turbo (Boost request) map:

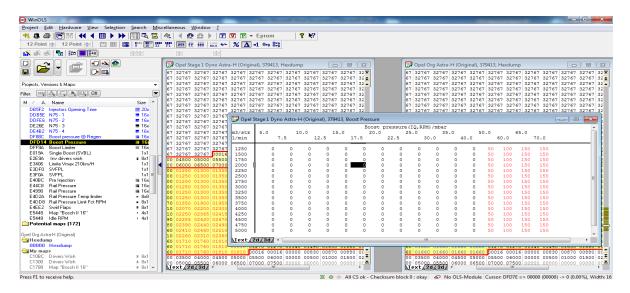
"The turbo on this car, a GT1749V, can handle a max boost of around 2650mbar. So the max value in this map may be 2600mbar." This turbo pressure is only for the 150hp version. The lower hp versions have also lower turbo pressure! As per Garrett this turbo can support around 175Hp, so I would not advise you going to 2600mbar. You can assume that the turbo pressure may be increased by around 7% max.

Since we are only tuning for max power only the 3-4 most right columns has to be changed. As you can see the boost goes up to max 2510mbar. Pro tuner work with fixed Delta and increase boost request for 70mm3 IQ by 150mbar. "Maybe use of flat value from the lowest to the highest rpms is not the best approach. I choose to increase mine working in %".

It was before. As I said above Maybe [©]. However maybe it is better to request more boost while compressor work in its high efficiency islands, instead out of them and getting over speed to reach required Pressure Raito. In my last tune I also use Delta values, trying to get higher boost when compressor is not on its maximum. At the extreme upper right corner I copy some cells from Astra file. Probably to avoid surges, at this area stock manual Astra request up to 50% more than my stock automatic Vectra.

As you can see the axis value goes up to 70mm3/stroke. As we will inject about 80mm3/stroke (by my logging, with 15% increase) you can rescale axis and boost request. Pro tuner did not although he did 20% increase of IQ...

Economy tuning is much more complicated... At low RPM and IQ, EGR restrict MAF to 200 – 500 mg/stroke. Naturally aspired 1.91ltr engine will get 0.48ltr/stroke * 1290mg/ltr = 619 mg/stroke.


Applying correction for volumetric efficiency of the engine as a function of engine speed 619 mg/stroke * 0.90 = 557.1 mg/stroke (+/- some error, should be the reading from MAF sensor)

So why should restrict natural aspiration by EGR and request boost for IQ less than 25mm3/stroke (and 1mm3 is only 0,86mg). Many tuners report better fuel economy with decreased boost request. However I doubt that requesting 0.01mbar more at compressor side will bring more pumping losses (less beneficial) than 10 bars more requested at CRP. So now I give (EGR off) and force (higher rqst at high IQ) my engine to breathe more. N75 should also be adjusted to avoid spikes and lower back pressure on the exhaust system.

In order to calculate actual MAF from Boost pressure should take in account also:

- map for air pressure compensation for boost pressure control
- map to determine base value of desired boost pressure (15. Boost request)
- curve for air temperature dependent factor for boost pressure control
- maximum allowed desired boost pressure according to air pressure (16. Boost limiter map)
- maximum allowed desired boost pressure (17. SVBL)
- overall efficiency turbocharger
- Default value environment air pressure for turbo model 980mbar
- induction volume (effective volume between turbocharger and mixing point) (lag from MAP to MAF control)
- Exhaust gas back pressure MAP
- correction factor for compensation of the dependency of the volumetric efficiency of the gas temperature upstream of the inlet
- volumetric efficiency of the engine as a function of engine speed and current injection quantity (This is the other map playing major effect, for mine 1.9cdti 16v correction is 86 to 93%)
- correction factor for volumetric efficiency as a function of engine speed and relative swirl valve position
- Factor for correction of the torque loss due to exhaust-gas back pressure caused by installed particle filter
- Limitation below of the torque loss due to exhaust gas back pressure caused by installed particle filter

WinOLS	_	-			_	-		-	-	-	-								-	_				
ject Edit Hardware ⊻iew Selection			neous)	<u>N</u> indow	2																			
• 🎩 😂 🗃 🕅 📢 🖣 🛄 🕨 🕪	1 🖽 🗟 💆	\$ 24	📲 🏫	<u>e</u> ∰ }	💽 🔽	🛛 🕶 Ері	rom	1	2 12															
2 Point 🛬 12 Point 🛬 🛛 🖽 🛛 🗱	8 S 18. S	2 F1	255	- 333 100	*- %	Δ ×1 0	ina 853																	
: 🖄 🚿 🍢 🌆 🔳 🖬			A. V	l	A																			
		Ter P	Opel St	age 1 Dyne	o Astra-H (Original), 3	79413, ⊢	lexdum	,			83			Opel Or	q Astra-	-H (Orig	inal), 37	9413, He	exdump				
						67 32767																	32767	
ects, Versions & Maps:		67	32767		2767 327 2767 327				32767 32767		32767 32767			67	32767 32767								32767 32767	
mu ▲ i → Pu KK Off			32767			67 32767																	32767	
						67 32767 67 32767																	32767 32767	
/ A. Name	Size ^	67		32767 3		0/ 32/0/	32/6/	32/6/	32/6/	32/6/	32/6/	32		0/	32/6/	32/6/	32/6/	32/6/	32/6/	32/6/	32/6/	32/6/	32/6/	32/6/
B5F2 Injectors Opening Time DB5E N75 - 1	20x		32767	32767 3		Stage 1 Dy	no Astra	a-H (Ori	ginal), 37	9413, Bo	oost Pre	ssure											•	× 7
DFE6 N75-2	= 16x		32767										ressure											^ 7
E26E N75-3	■ 16×		32767		m3/stk	5.0		10.0		15.0		20.0		25.0		35.0		50.0		65.0				7
E4B2 N75-4	= 16x		32767		1/min		7.5		12.5		17.5		22.5		30.0		40.0		60.0		70.0			. 7
F88C Boost pressure @ Regen	16×	67	32767	32767 3	1250	1000	1000	1028	1044	1060	1078	1109	1163	1190	1210	1220	1240	1510	1750	1840	1840			7
FD14 Boost Pressure FF9A Boost Limiter	16		32767		1500	1021	1036	1050	1066	1070	1100	1140		1250	1430	1500	1560	1700	1830	1970	2005			7
PFSA Boost Limiter 019A Single Boost (SVBL)	■ 16× 1×1		32767		1750	1040	1060	1068	1103	1127	1160	1192	1261	1330	1488	1591	1685	1867	2036	2141	2210			7
2E9A Inv drivers wish	8×1		32767	05000 0	2000	1048	1074	1092	1128	1163		1248		1392	1555	1669	1774	1950	2120	2240	2300			0
3406 Limite Vmax 210km/H	1×1			06500 0	2250	1069	1106	1133	1164	1210	1258	1304		1471		1736	1830	2030	2190	2310	2360			0
3DF0 SVFPL	- 1×1		01250		2500 2750	1105	1144 1178	1173 1224	1221 1277	1278 1324	1324 1388	1429 1473		1615 1643	1740 1778	1840 1870	1899 1946	2112 2154	2300 2355	2400	2415 2450			= 0
3F0A SVFPL	• 1×1 ≡	00			3000	1186	1228	1266	1328	1324	1428	1490		1643		1891	1946	2199	2355	2450	2450			0
40BC Pre Injection	■ 16×		01250		3250	1236	1220	1318	1365	1425	1471	1543		1666		1909	2004	2225	2408		2480			0
44C8 Rail Pressure	16×	00			3500	1279	1324	1369	1424	1479	1529	1579		1699		1926	2031	2258	2428	2490	2490			0
4990 Rail Pressure 4D2A Rail Pressure Temp limiter	■ 16x ■ 8x8	00			3750	1326	1371	1414	1468	1523	1569	1619	1675	1728	1844	1944	2058	2289	2439	2500	2500			0
4DD8 Rail Pressure Limit Fct RPM	 8x1 	00			4000	1372	1416	1459	1513	1566	1613	1659		1765		1981	2084	2323	2460	2510	2510			0
4EE2 Swirl Flaps	 8x1 	10			4250	1411	1445	1488	1542	1603	1635	1695		1791	1900	2015	2109	2300	2450	2500	2500			0
5448 Map 'Bosch II 16''	4×1	10			4500	1450	1484	1531	1581	1641	1671	1730		1828	1941	2049	2125	2320	2370	2420	2420			0
5448 Idle RPM	• 4×1	90		02420 0	4750	1468	1509	1563 1565	1616 1598	1673 1630	1708	1734	1765 1655	1800	1878 1660	1965	2068 1660	2220 1710	2270 1760	2320 1810	2320 1810			- O
otential maps (172)		80			5000	1 1500	1533	1565	1238	1630	1640	1650	1655	1660	1000	1660	1660	1/10	1/60	1810	1810			- 0
		60			Iext	2d/3d/	•																- F	0
Drg Astra-H (Original) I exdump		10																						0
0000 Hexdump		60				10 01270 10 01270																	01630	
ly maps		60	01710	01760 0	1010 018				00830														01630	
10BC Drivers Wish	# 8x1		03500	04000 0	4500 050	00 05500																	01000	
1300 Drivers Wish	# 8×1	00	05000	05500 0		00 07000																	00000	
21788 Map "Bosch II 16"	1 8x1 🔻	1 AT	ext/20	1/34/ 4			111					P.			xt/20		*			111				

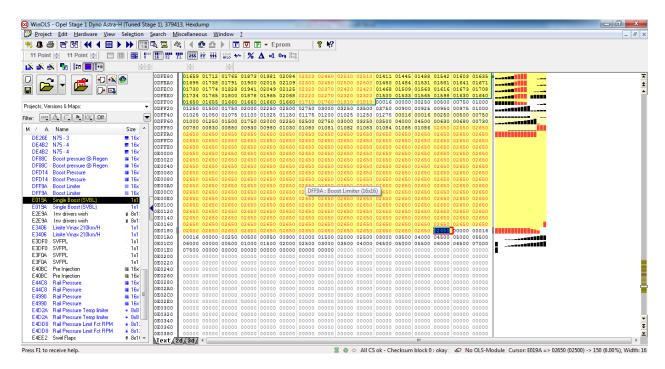
Mine Boost Pressure (one of mine, now is something different[©], w/o blue & a bit more red)

		- 8
int 🔄 🛛 🔢 🖩 📰 🞚	🖪 💯 📆 🔤 🔢 🕅 📾 🚧 🔏 🛆]×1 0rg 8:3 K
nbar		
35.0 50.0 40.0 6	65.0 60.0 70.0	
5 0 25 120	285 400 450	
5 0 60 140 5 0 50 105	170 220 255 156 171 180	
5 0 55 50	100 150 175	
5 0 25 50	100 150 175	
5 0 25 75	125 150 175	
5 0 50 75	125 150 175	
0 0 25 75	125 150 175	
0 0 25 75 0 0 25 75	125 150 175 125 150 170	
0 0 25 75 0 0 25 75	125 150 170 125 150 160	
0 0 25 75	125 150 160	
0 0 25 0	125 150 160	
0 0 25 75	125 150 175	
0 0 25 75	125 150 175	
0 0 25 75	125 150 175	
		Þ
ksu	배 m block 0 : okay & No	배 m block 0 : okay : 43 No OLS-Module Cursor: DFD28 => 00000 (00000)

16. Turbo (Boost) limiter map:

At this point we have set the boost up to 2513 mbar in the turbo map, and prevent boost spikes by lowering the N75 map. But the boost limiter map will limit the 2513mbar back to 2500mbar as you can see in picture. Pro tuner increase boost request by 150mbar and so he did for the boost limiter. This way margin between boost request and limiter stay untouched. As I used 6.5% for my boost I used same value for the boost limiter.

We need to change that values the same way as the turbo map, even a bit higher because this is the limiter. Since we only drive at sea level (1013,25hpa), there is no need to adjust the car at 900hpa and lower (or you live at more than 1000metres above sea level). Stock Opel have same value all over the range despite of atmospheric pressure.


WinOLS		_		_				_			_	_												×
Project Edit Hardware View Selecti	on <u>S</u> earch <u>M</u> i	iscella	neous)	<u>W</u> indow	2																			
🕺 🚨 🕞 📧 📢 🖣 🖿 🕨									8	N?														
12 Point 🗧 12 Point 🚔 🛄		2 F1.		111		8	Δ×1 0	Jrg Brg																
👬 🐇 🐇 🍢 🏧 🔲		r -	×.		A Y																			
🖁 📂 🔸 📫 🖓	J		Opel Sta															nal), 379						
		67	32767	32767	32767	3276	7 32767	32767	32767	32767 3	32767 3	2767 32 🛣 2767 32 🛣		67	32767	32767	32767	32767	32767	32767	32767	32767	32767 327 32767 327	67 32 🗙
Projects, Versions & Maps:	•	67					7 32767					2767 32											32767 327 32767 327	
Filter: 🛄 🕰 🛄 🔍 KK Off		67					7 32767																32767 327 32767 327	
M / A. Name DB5F2 Injectors Opening Time	Size A	67		32767	32767	3276	7 32767	32767	32767	32767 3	32767 3	2767 32		67	32767	32767	32767	32767	32767	32767	32767	32767	32767 327 32767 327	67 32
DDB5E N75-1 DDFE6 N75-2	 16x 16x 	67	32767	32767	32767	3276	7 32767									32767	32767	32767	32767	32767	32767	32767	32767 327	
DE26E N75-3	■ 16x	67	7 32767 7 32767	32767	32767	321			yno Astr	ra-H (Orir	ginal), 37	9413, Boost	Limiter			31121				20767				
DE4B2 N75 - 4 DF88C Boost pressure @ Regen	= 16x = 16x	67	7 32767 7 32767	32767	32767	321						MAI	P (Atmospi	heric	Pressu	re?,RP	1)/mbai	c						^
DFD14 Boost Pressure DFF9A Boost Limiter	16x	67	7 32767 7 32767	32767	32767	321	mbar 1/min	630	680	730	780	330 880	930	980	1030	1080	1081	1082	1083	1084	1085	1086		
E019A Single Boost (SVBL) E2E9A Inv drivers wish	1×1 8×1	67	7 32767	32767	00016	000	250	2650	2650	2650	2650	2650 26	50 2650	265	2650	2650	2650	2650	2650	2650	2650	2650		
E3406 Limite Vmax 210km/H E3DF0 SVFPL	1×1		0 0 6 0 0 0				500 750	2650 2650	2650	2650	2650 2650	2650 26 2650 26	50 2650	265	2650	2650	2650	2650 2650	2650 2650	2650 2650	2650 2650	2650 2650		
E3F0A SVFPL	· 1x1 ≡		01250	01300	01350	013	1000	2650	2650	2650	2650	2650 26	50 2650	265	2650	2650	2650	2650	2650	2650	2650	2650		
E40BC Pre Injection E44C8 Rail Pressure	■ 16× ■ 16×	00		01300 01300	01350 01350	013	1250 1500	2650 2650	2650	2650	2650 2650	2650 26 2650 26	50 2650	265	2650	2650	2650	2650 2650	2650 2650	2650	2650 2650	2650 2650		E
E4990 Rail Pressure E4D2A Rail Pressure Temp limiter	■ 16× ■ 8×8	00	01250	01300	01350		1750 2000	2650 2650	2650	2650	2650	2650 26	50 2650	265	2650	2650	2650	2650 2650	2650 2650	2650	2650 2650	2650 2650		
E4DD8 Rail Pressure Limit Fct RPM E4EE2 Swirl Flaps	= 8x1 = 8x1	70	01850	01900	01950	019	2250 2500	2650 2650	2650 2650		ta: +150 2650	6.0%) 26 2650 26						2650 2650	2650 2650	2650 2650	2650 2650	2650 2650		
E5448 Map "Bosch II 16" E5448 Idle RPM	4×1	10	02250	02365	02415	024	2750 3000	2650 2650			2650 2650	2650 26 2650 26						2650	2650	2650	2650	2650		
Potential maps (172)	1 481	90 80		02420 02440			3250 3500	2650	2650	2650	2650	2650 26 2650 26	50 2650	265	2650	2650	2650	2650	2650	2650	2650	2650		
pel Org Astra-H (Original)		60 10		02460 02310			4000	2650 2650	2650	2650	2650	2650 26	50 2650	265	2650	2650	2650	2650	2650	2650	2650 2650	2650		
Hexdump 00000 Hexdump		60	01710	01760	01810	018	4500	2650		2650	2650	2650 26	50 2650	265	2650	2650	2650	2650	2650	2650	2650	2650		-
My maps C10BC Drivers Wish	∎ 8×1	60	01710	01760	01810	018	lext (01000 015	•
C1300 Drivers Wish C1788 Map "Bosch II 16"	■ 8×1 ■ 8×1 ▼	00	05000	05500	06000	0650	0 07000	07500	00000	00000 0	00000 0	L500 02▼ 0000 0C≍		00	05000	05500	06000	06500	07000	07500	00000	00000	00000 000	
ress F1 to receive help.	1 I I I I		extAzu	1V 90			_																150 (6.00%)	
Project Edit Hardware View Selecti N. 3. 4. 10 100 100 100 100 100 100 100 100 100	로 🖉 📰 ا	82	1		-				8	. № ?														
in a a a a a a a a a a a a a a a a a a a	1000 0 10 32	2 11.	- (<u>1996</u>) 55		HILO 🔻	170 (<u> </u>																	
			Opel Sta	200 1 D	upo Actr		riginal) i	70/12 U	avduman					101	l Onel O	ra Actro		nal), 379	112 Llo	vduran.				
												2767 32									32767	32767	32767 327	
Projects, Versions & Maps:												2767 32 🚖											32767 327 32767 327	
Iter:		67	7 32767	32767	32767	3276	7 32767	32767	32767	32767 3	32767 3	2767 32		67	32767	32767	32767	32767	32767	32767	32767	32767	32767 327 32767 327	67 32
A Name	Size ^	67	32767	32767	32767	3276	7 32767	32767	32767	32767 3	32767 3	2767 32		67	32767	32767	32767	32767	32767	32767	32767	32767	32767 327	67 32
DB5F2 Injectors Opening Time DDB5E N75 - 1	20x	67 67	32767	32767	32767	3276	7 32767 7 32767	32767	32767	32767 3	32767 3	2767 32		67	32767	32767	32767	32767	32767	32767	32767	32767	32767 327 32767 327	67 32
DDFE6 N75-2	■ 16× ■ 16×	67		32767	32767	327	2 92262		22767	32767 3	2767 3	2767 32		67	32767	32767		32767	32767	32767	32767	32767	32767 327	67 32
DE26E N75-3 DE482 N75-4														- 167	20060	211121								×
	= 16x = 16x	67 67		32767	32767	321	🗒 Opel (Stage 1 D	yno Astr	ra-H (Ori <u>c</u>	ginal), 37	9413, Boost		1167										_
DE482 N75-4 DF88C Boost pressure @ Regen DFD14 Boost Pressure	 16x 16x 16x 	67 67 67	7 32767 7 32767	32767 32767	32767 32767	327	mbar	Stage 1 D		730	-	MA1 330	P(Atmosp) 930		Pressu 1030			c	1083		1085			^
DF88C Boost pressure @ Regen DFD14 Boost Pressure DFF9A Boost Limiter	 16× 16× 16× 16× 	67 67 67 67 67	7 32767 7 32767 7 32767 7 32767 7 32767	32767 32767 32767 32767	32767 32767 32767 32767	321 321 321 321			yno Astr 680	730	-	MAI	P(Atmosp) 930	heric 980		re?,RP1 1080	1)/mbai		1083	1084	1085	1086		Î
DF88C Boost pressure @ Regen DFD14 Boost Pressure DFF9A Boost Limiter E0134 Single Boost (SVBL) E2E9A Inv drivers wish	 16x 16x 16x 16x 18x 1x1 8x1 	67 67 67 67 67 67 67	7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 0 04500	32767 32767 32767 32767 32767 32767 05000	32767 32767 32767 32767 00016 05500	321 321 321 321 321 000 060	mbar 1/min 250	630 150	680	730	780	MA 830 880 150 1	P (Atmosp) 930 50 150	980	1030	1080	4)/mbar 1081 150	1082 150	150	1084 150	150	150		_
DF88C Boost pressure @ Regen DFD14 Boost Pressure DF59A Boost Limiter E019A. Single Boost (SVBL) E2E9A Inv drivers wish E3406 Limite Vmax 210km/H E30F0 SVFPL	16x 16x 16x 16x 16x 1x1 8x1 1x1 1x1 1x1	67 67 67 67 67 67 67	7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 0 04500 0 06000	32767 32767 32767 32767 32767 32767 05000	32767 32767 32767 32767 00016 05500	321 321 321 321 321 000 060	mbar 1/min 250 500 750	630 150 150 150	680 150 150 150	730 150 150 150	780 150 150 150	MA1 830 150 1 150 1 150 1 150 1	P(Atmosp) 930 50 150 50 150 50 150	980 15 15	1030) 150) 150) 150	1080 150 150 150	4)/mbar 1081 150 150 150	1082 150 150 150	150 150 150	1084 150 150 150	150 150 150	150 150 150		
DF88C Boost pressure @ Regen DFD14 Boost Pressure DFF93A Boost Limiter E019A, Single Boost (SVBL) E2E9A, Inv drivers wish E3406 Limite Vmax 210km/H	16x 16x 16x 16x 1x1 8x1 1x1	67 67 67 67 67 67 67	7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 0 4500 0 6000 0 01250 0 01250	32767 32767 32767 32767 32767 32767 05000 06500	32767 32767 32767 32767 00016 05500	321 321 321 321 321 000 060	mbar 1/min 250 500 750 1000 1250	630 150 150 150 150 150	680 150 150 150 150 150	730 150 150 150 150 150	780 150 150 150 150 150	MA1 830 150 1 150 1 150 1 150 1 150 1 150 1	P (Atmosp) 930 50 150 50 150 50 150 50 150 50 150 50 150	980 15 15 15 15 15	1030) 150) 150) 150) 150) 150) 150	1080 150 150 150 150 150	4)/mbar 1081 150 150 150 150 150	1082 150 150 150 150 150 150	150 150 150 150 150	1084 150 150 150 150	150 150 150 150 150	150 150 150 150 150		^
DF88C Boost pressure @ Regen DF114 Boost Pressure DF1542 Boost Leimiter E0194 Single Boost (SVBL) E2294. Inv drivers wich E3406 Limite Vmax 210km/H E3406 SVFPL E3404 SVFPL	16x 16x 16x 16x 18x 18x1 18x1 1x1 1x1 1x1	67 67 67 67 67 67 00 00 00 00 00 00 00	7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 0 04500 0 04500 0 04500 0 01250 0 01250 0 01250 0 01250	32767 32767 32767 32767 32767 32767 05000 06500	32767 32767 32767 32767 00016 05500	321 321 321 321 321 000 060	mbar 1/min 250 500 750 1000 1250 1500 1750	630 150 150 150 150 150 150 150	680 150 150 150 150 150 150 150	730 150 150 150 150 150 150 150	780 150 150 150 150 150 150 150	MA1 330 880 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 1 150 1 1 1 1	P (Atmosph 930 50 150 50 150 50 150 50 150 50 150 50 150 50 150	980 15 15 15 15 15 15 15	1030) 150) 150) 150) 150) 150) 150) 150) 150) 150	1080 150 150 150 150 150 150	4)/mbar 1081 150 150 150 150 150 150	1082 150 150 150 150 150 150 150	150 150 150 150 150 150 150	1084 150 150 150 150 150 150	150 150 150 150 150 150	150 150 150 150 150 150 150		E
DF88C Boot pressure @ Regen DF148 Boot Pressure DF148 Boot Pressure 25148 Drote Limiter 25149 Index Limiter 25149 Index Limite Vinas 210km/H 23406 Limite Vinas 210km/H 23706 SVFPL 23706 SVFPL 2408C Pre Injection 24402 Rail Pressure 24502 Rail Pressure 24502 Rail Pressure	■ 16× ■ 16× ■ 16× ■ 16× ■ 16× ■ 181 ■ 181 ■ 16× ■ 16× ■ 16× ■ 16× ■ 8×8	67 67 67 67 67 00 00 00 00 00	7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 0 04500 0 04500 0 04500 0 01250 0 01250 0 01250 0 01250 0 01250	32767 32767 32767 32767 32767 32767 05000 06500	32767 32767 32767 32767 00016 05500	321 321 321 321 321 000 060	mbar 1/min 250 500 750 1000 1250 1500	630 150 150 150 150 150 150	680 150 150 150 150 150 150	730 150 150 150 150 150 150 150	780 150 150 150 150 150 150	MA1 230 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1	P (Atmosph 930 50 150 50 150 50 150 50 150 50 150 50 150 50 150 50 150	980 15 15 15 15 15 15 15 15 15 15 15	1030 150 150 150 150 150 150 150 15	1080 150 150 150 150 150 150 150 150	4)/mbar 1081 150 150 150 150 150 150 150	1082 150 150 150 150 150 150	150 150 150 150 150 150	1084 150 150 150 150 150 150	150 150 150 150 150	150 150 150 150 150		
DF38C. Bood pressure @ Flegen DF14 Bood Pressure D134S 2003 Limiter E019A. Snogl Limiter E019A. Snogl Bood (SVBL) E259A. Inv drives wish E3405. Limite Vmax 210km/H E30F0. SVFPL E3406. Child Press E4402 Rail Pressure E4402 Rail Pressure E4402 Rail Pressure E402A. Rail Pressure E402A	15x 15x 15x 15x 15x 1x1 1x1 1x1 1x1 1x1	67 67 67 67 67 00 00 00 00 00 00 00 00 00 00 00 00 00	7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 0 04500 0 04500 0 04500 0 01250 0 01250 0 01250 0 01250 0 01250 0 01250 0 01250	32767 32767 32767 32767 05000 06500 01300 01300 01300 01300 01300	32767 32767 32767 32767 00016 05500	321 321 321 321 321 000 060	mbar 1/min 250 500 750 1000 1250 1500 2000 2250 2500	630 150 150 150 150 150 150 150 150 150	680 150 150 150 150 150 150 150 150 150	730 150 150 150 150 150 150 150 150 150 15	780 150 150 150 150 150 150 150 150 150 15	MA1 330 880 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 1 150 1 1 1 1	P (Atmosph 930 50 150 50 150 50 150 50 150 50 150 50 150 50 150 50 150 50 150 50 150	980 151 151 151 151 151 151 151 151 151 15	1030 0 150 0 1	1080 150 150 150 150 150 150 150 150 150 15	4) /mbar 1081 150 150 150 150 150 150 150 150 150 15	1082 150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150	1084 150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150		н
DF88C Boost pressure OF Each DF914 Boost Vessure DF944 Boost Vessure DF944 Boost Vessure DF944 Boost Vessure DF944 Boost Vessure Vessure DF944 E2019A Single Boost (SVBL) E2019A Single Boost (SVBL) E3065 Linker Venss 210km/H E30FD SVFPL E3060 SVFPL E4020 Fessure E402A Rail Pressure E402A Rail Pressure E402A Rail Pressure FestE SVMF Flap E5448 Map "Boost IN 15" E5448 Map "Boost IN 15"	16x 15x 15x 16x 16x 1x1 1x1 1x1 1x1 1x1 1x1 1x1 1x	67 67 67 67 00 00 00 00 00 00 00 00 00 00 00 00 00	7 32767 7 32767 7 32767 7 32767 7 32767 9 2767 9 2767 0 1250 0 02250	32767 32767 32767 32767 32767 05000 06500 01300 01300 01300 01300 01300 01300 01300	32767 32767 32767 32767 00500 01350 01350 01350 01350 01350 01350 01350 01350 01350 01350 01350 01350 01350 01350 01350 01350 01350	32 32 32 32 000 060 075 013 013 013 013 013 013 013 013 013 013	mbar 1/min 250 500 750 1250 1250 1250 1250 2250 2500 2250 2500 2750 3000	630 150 150 150 150 150 150 150 150 150 15	680 150 150 150 150 150 150 150 150 150 15	730 150 150 150 150 150 150 150 15	780 150 150 150 150 150 150 150 15	MA1 330 150 1 150 1	P (Atmosp) 930 50 150 50 150	980 151 151 151 151 151 151 151 151 151 15	1030 1030 150 150 150 150 150 150 150 15	1080 150 150 150 150 150 150 150 150 150 15	4)/mbar 1081 150 150 150 150 150 150 150 150 150 15	1082 150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	1084 150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150		E
DPB0C Boot pressure @ Regen DFD14 Boot Pressure DFD34 Boot Pressure E0193. Single Boot (SVBL) E259A Inv drivesr with E3406 Limbe Vmax 210km/H E30FD SVFPL E408C Pie Injection E4408 Rail Pressure E4030 Rail Pressure E5448 Map 'Booch I15' E5448 Map 'Booch I15'	16x 16x 16x 16x 16x 16x 1x1 1x1 1x1 1x1	67 67 67 67 00 00 00 00 00 00 00 00 00 00 00 00 00	7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 0 04500 0 04500 0 01250 0 01000000000000000000000000000000000	32767 32767 32767 32767 32767 05000 06500 01300 01300 01300 01300 01300 01300 01300 01300 02200 02205 02420 02440	32767 32767 32767 32767 32767 00016 05500 01350 01350 01350 01350 01350 01350 01350 01350 01350 01350 02405 02470 02490	32 32 32 32 000 060 075 013 013 013 013 013 013 013 013 013 013	mbar 1/min 250 500 750 1250 1250 1250 1250 1250 2250 2250 22	630 150 150 150 150 150 150 150 15	680 150 150 150 150 150 150 150 150 150 15	730 150 150 150 150 150 150 150 15	780 150 150 150 150 150 150 150 15	MA 330 15	P (Atmosp) 930 50 150 50 150	980 151 151 151 151 151 151 151 155 155 15	1030 1030 150 150 150 150 150 150 150 15	1080 150 150 150 150 150 150 150 150 150 15	4)/mbar 1081 150 150 150 150 150 150 150 150 150 15	1082 150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	1084 150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150		. III
DFBCC Boost pressure DFBCH Boost Pressure DE324 Broot Lemitor DE324 Broot Lemitor DE345 Area Market Pressure DE324 Broot SVFEL EXEAD Inv drivers with EXEAD Exercise EXEAD SVFFL EXERCISE EXERCISE EVEND SVFFL EXERCISE EXERCISE E4430 Rail Pressure E4400 Rail Pressure E4400 Rail Pressure EXERCISE EXERCISE E5415 Main Pressure EXERCISE EXERCISE E5425 Main Pressure EXERCISE EXERCISE E5445 Main Pressure EXERCISE EXERCISE E5445 Main Pressure EXERCISE EXERCISE Potential manaps (172) EXERCISE Dig Asta+H (Driginal)	16x 16x 16x 16x 16x 16x 1x1 1x1 1x1 1x1	67 67 67 67 00 00 00 00 00 00 00 00 00 00 00 00 00	7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 0 04500 0 04500 0 04500 0 01250 0 02250 0 02250 0 02240 0 02410 0 02400	32767 32767 32767 32767 05000 01300 01300 01300 01300 01300 01300 01300 01300 01300 02200 02365 02420 02440 02460 02410	32767 32767 32767 32767 0016 05500 01350 01350 01350 01350 01350 01350 01350 01350 01350 02300 02415 02490 02510 02510	32 32 32 32 000 060 075 013 013 013 013 013 013 013 013 013 013	mbar 1/min 250 500 750 1000 1250 1500 2000 2250 2500 2500 2750 3000 3250	630 150 150 150 150 150 150 150 15	680 150 150 150 150 150 150 150 150 150 15	730 150 150 150 150 150 150 150 15	780 150 150 150 150 150 150 150 15	MA 330 880 150 1 150 1 15	P (Atmosp) 930 50 150 50 150	980 151 152 155 155 155 155 155 155 155 155	1030 1030 150 150 150 150 150 150 150 15	1080 150 150 150 150 150 150 150 150 150 15	4)/mbar 1081 150 150 150 150 150 150 150 150 150 15	1082 150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	1084 150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150		E
DFBC Boost pressure ® Fresture DE542-W Boost Ventor DE542-W Boost Ventor DE342-W Boost Ventor DE348-Well EXEAW Boost Ventor EXEAW EXEAW Boost Ventor EXEAW EXEAW Boost Ventor EXEAW EXEAW Boost Ventor EXEAW EXEAW SVFPL EXEAW EXEAW Rain Pressure EXEAW E4430 Rail Pressure E4402 Rail Pressure E4402 Rail Pressure E4402 Rail Pressure E4403 Rail Pressure E4404 Rail Pressure E4405 Rail Pressure E4406 Rail Pressure E4407 Rail Pressure E4408 Rail Pressure E5445 Map Potochill anaps (172) pelotigradiamaps (172) Ding Asta+H (Driginal) Ob0000 Hexdump	16x 16x 16x 16x 16x 16x 1x1 1x1 1x1 1x1	67 67 67 67 00 00 00 00 00 00 00 00 00 00 00 00 00	7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 7 32767 0 04500 0 01250 0 01250 0 01250 0 01250 0 01250 0 01250 0 01250 0 01250 0 01250 0 02250 0 02250 0 02250 0 02250 0 02260 0 02260 0 02260 0 02260	32767 32767 32767 32767 05000 01300 01300 01300 01300 01300 01300 01300 01300 01300 02200 02200 02240 02420	32767 32767 32767 32767 0016 05500 01350 01350 01350 01350 01350 01350 01350 01350 01350 02300 02415 02490 02510 02510	32 32 32 32 32 000 060 075 013 013 013 013 013 013 013 013 013 013	mbar 1/min 250 500 750 1250 1250 1250 2250 2250 2250 2250 22	630 150 150 150 150 150 150 150 15	680 150 150 150 150 150 150 150 15	730 150 150 150 150 150 150 150 15	780 150 150 150 150 150 150 150 15	MA 330 880 150 1 150 1 15	P (Atmosp) 930 50 150 50 150	980 151 152 155 155 155 155 155 155 155 155	1030 1030 150 150 150 150 150 150 150 15	1080 150 150 150 150 150 150 150 150 150 15	<pre>4) / mbar 1081 1081 150 150 150 150 150 150 150 150 150 15</pre>	1082 150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	1084 150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150		
DFBGC Boost pressure DFBCH Boost Pressure DISE2-08 Boost Limitor Disease Disease DISE2-08 VirPL E3005 Limitor Disease E3005 SvFPL E3004 Disease E4008 Rail Pressure E4030 Rail Pressure E40208 Rail Pressure E40208 Rail Pressure E4028 Rail Pressure	15x 15x 15x 15x 15x 15x 15x 15x 15x 15x		7 32767 7 32767 7 32767 7 32767 7 32767 0 04500 0 04500 0 04500 0 1250 0 20250 0 20250 0 20250 0 20240 0 20240000000000	32767 32767 32767 32767 32767 05000 01300 01300 01300 01300 01300 01300 01300 01300 02205 02420 02440 02440 02440 02440 02440 02400 01760 01760 01760 01760	32767 32767 32767 32767 50016 05500 01350 01350 01350 01350 01350 01350 01350 01350 01350 02450 02450 02450 02415 02470 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02500 02490 02500 02490 02500 02490 02490 02490 02500 02490 02400 02400 02400 04500 0400000000	327 327 327 327 327 000 0060 007 0013 013 013 013 013 013 013 013 013 01	mbar 1/min 250 500 1000 1250 1500 1750 2000 2250 2250 2250 2250 2250 2250 2	630 150 150 150 150 150 150 150 15	680 150 150 150 150 150 150 150 15	730 150 150 150 150 150 150 150 15	780 150 150 150 150 150 150 150 15	MA 330 150 1 150 1	P (Atmosp) 930 50 150 50 150	980 15 15 15 15 15 15 15 15 15 15 15 15 15	1030 1030 150 150 150 150 150 150 150 15	1080 150 150 150 150 150 150 150 15	4) / mbar 1081 150 150 150 150 150 150 150 150 150 15	1082 1082 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	1084 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	01000 015	
DF88C. Boost pressure @ Fleggen DF144 Boost Vensure DF144 Boost (Vensure DF144 Boost (Vensure E259A Inv drivers with E3065 SVFPL E3070 SVFPL E4020 Pair Pressure E4020 Rail Pressure E4020 Rail Pressure E4020 Rail Pressure E4020 Rail Pressure E5443 May "Boosth 15" E5443 Ide PM Potential maps (172) Peter (Iriginal) Hexdump U00000 Hexdump	15x 15x 15x 15x 15x 15x 15x 15x 15x 15x		7 32767 7 32767 7 32767 7 32767 7 32767 0 04500 0 04500 0 04500 0 1250 0 20250 0 20250 0 20250 0 20240 0 20240000000000	32767 32767 32767 32767 32767 05000 01300 01300 01300 01300 01300 01300 01300 01300 02205 02420 02440 02440 02440 02440 02440 02400 01760 01760 01760 01760	32767 32767 32767 32767 50016 05500 01350 01350 01350 01350 01350 01350 01350 01350 01350 02450 02450 02450 02415 02470 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02510 02490 02500 02490 02500 02490 02500 02490 02490 02490 02500 02490 02400 02400 02400 04500 0400000000	327 327 327 327 327 000 0060 007 0013 013 013 013 013 013 013 013 013 01	mbar 1/min 250 500 1000 1250 1500 1750 2000 2250 2250 2250 2250 2250 2250 2500 2500 2500 2500 2500 250 25	630 150 150 150 150 150 150 150 15	680 150 150 150 150 150 150 150 15	730 150 150 150 150 150 150 150 15	780 150 150 150 150 150 150 150 15	MA 330 880 15	P (Atmosp) 930 50 150 50 150	980 15 15 15 15 15 15 15 15 15 15 15 15 15	1030 1030 150 150 150 150 150 150 150 15	1080 150 150 150 150 150 150 150 15	4) / mbar 1081 150 150 150 150 150 150 150 150 150 15	1082 1082 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	1084 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150		

🕱 🐵 🜣 All CS ok - Checksum block 0 : okay 🛷 No OLS-Module Cursor: E00A4 => 00150 (00000) -> 150 (100.00%), Width: 16

Press F1 to receive help.

17. Single values boost limiter:

At this point we have set almost everything to get a higher boost except the absolute limiter. That's the last one we need to change. Opel engineers use same value for SVBL and boost limiter despite the atmospheric pressure. So just use the same stock +6.5% (on my last tune Delta=175mbar). As per some tuners this value has to be a bit (read 50mbar) higher than the highest turbo map value.

18. Turbo vanes (N75) map:

The N75 map controls the vanes inside the turbo, and when increasing IQ (or removing DPF) needs to be reduced to prevent turbo spiking. As we did not rescale boost map IQ axis will not rescale N75 axis neither. If you did so, better match N75 IQ axis to boost map IQ axis.

As a rule you can decrease the values from 1500-5000rpm at high IQ's by 8%. This is depending on the car, and how much boost spikes you have... still got boost spikes... reduce the map. You can see that the tuner choose to change all the maps same why, even those that are not in use (Astra didn`t have DPF). He did the same for the rail pressure (but not for lambda) designated for DPF regeneration.

After a lot of logging I could not find any benefits from lowering the N75 and now I running with stock.

Regular N75

褐 🕭 🖻 🖬 📢 🖣 🛄						- Epro		१ №											
	88 88 8***	16 32			*- % .	Δ ×1 0rg	Org												
👫 🕷 🛞 🔚 🖬 🔳 🌆																			
] ((*		0		1000		2000		3000	-(-,	-)/% 4000		5000		6000		7000		
				500		1500		2500		3500		4500		5500		6500		7500	
ojects, Versions & Maps:	-	830	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
er: IIII) 🕰 🗊 腌 KK, Off		870	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
		880 920	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
/ A. Name	Si ^	920	46.7	46.7	46.7	60.0	100.0	86.7	96.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
D0790 Start of Injection 3	■ 16>	1500	45.3	45.3	46.7	53.3	61.3	76.0	86.7	93.3	96.0	98.7	100.0	100.0	100.0	100.0	100.0	100.0	
D09D4 Start of Injection 4 D0019 Start of Injection 5	■ 16» = 10	2000	44.0	44.0	46.7	53.3	61.3	70.7	77.3	80.0	82.7	85.3	86.7	86.7	86.7	84.0	80.0	80.0	
D0C18 Start of Injection 5 D1844 Start of Injection 1b	■ 16) ■ 16)	2500	42.7	42.7	45.3	52.0	60.0	66.7	72.0	74.7	76.0	77.3	77.3	76.0	73.3	68.0	68.0	68.0	
D1A88 Start of Injection 2b	■ 16>	3000	42.7	42.7 42.7	45.3 44.0	49.3 48.0	54.7 53.3	61.3 58.7	65.3 62.7	66.7 64.0	68.0 65.3	68.0 65.3	68.0 65.3	65.3 62.7	61.8 58.6	61.8 58.6	61.8 58.6	61.8 59.3	
D1CCC Start of Injection 3b	a 16>	4000	40.0	40.0	42.7	45.3	50.7	57.3	60.0	61.3	62.7	62.7	61.3	58.7	58.7	58.7	58.7	58.7	
D1F10 Start of Injection 4b	16	4500	40.0	40.0	41.3	44.0	49.3	56.0	58.7	60.0	60.0	60.0	60.0	58.7	58.7	58.7	58.7	58.7	
D2154 Start of Injection 5b	🔳 16>	5000	40.0	40.0	41.3	44.0	49.3	56.0	58.7	60.0	60.0	53.3	53.3	53.3	53.3	53.3	53.3	53.3	
D455C Lambda @ regein	= 16	5500	40.0	40.0	41.3	44.0	49.3	56.0	58.7	60.0	60.0	53.3	40.0	40.0	40.0	40.0	40.0	40.0	
DB5F2 Injectors Opening Time	20	6000	40.0	40.0	41.3	44.0	49.3	56.0	58.7	60.0	60.0	53.3	40.0	40.0	40.0	40.0	40.0	40.0	
DDB5E N75 - 1 regular on regen																			
DDFE6 N75 - 2 regular DE26E N75 - 3 transient on regen	= 16) = 16)																		
DE4B2 N75 - 4 transient	16																		
DF88C Boost pressure @ Regen	16																		
DFD14 Boost Pressure	16)																		
DFF9A Boost Limiter	= 16																		
E019A Single Boost (SVBL)	< 1x1																		
E1B3E EGR hysteresis	25>																		
E1BA4 EGR hysteresis	25>																		
E1COA EGR hysteresis																			
E2E9A Inv drivers wish E3DF0 SVFPL	■ 8×1 1×1 =																		
E3F0A SVFPL	181																		
E40BC Pre Injection	■ 16×																		
E44C8 Rail Pressure on regen	1 6																		
E4990 Rail Pressure normal	16)																		
E4D2A Rail Pressure Temp limiter	 8x6 																		
E4DD8 Rail Pressure Limit Fct RPM	 8x1 																		
Potential maps (172)	-	Text /3	2d/3d/ <									11							
s F1 to receive help.		A							800	All CS of	Checksur	n block 0 :	okav si	No OLS-N	Andule C	urson DDP	SE -> 0000	o (00000) -~	0 (0.00%), Wid
si i to receive neip.										MILCO UK -	Checksur	IT DIOCK U :	UKay QU	NO OLS-I	noudle C	uison DDB	JE = 2 0005	a (0003a) - x	0 (0.00 /6), 9910

🕺 WinOLS - Opel Stage 1 Dyno Astra-H (Tune	d Stage 1), 37	9413, N75 - 1 r	egular on reg	en		-									-	-	- 0 ×
Project Edit Hardware View Selecti	ion <u>S</u> earch	Miscellaneous	Window	2													- 8
** 3 😂 🖻 18 🕂 🗲 🔳 🕨	🗐 🗟 💆				Eprom	8 №											
11 Point 🚔 11 Point 🚔 🔣 🔣	8 16 32	T1 255 FF	111 LOHI +-	· % 🛕 ,	1 Org 8rg												
🖍 🗟 🚿 🍢 🖬	A A V V		×.														
	-	- o	10 500	100	2000	2500	3000	- (-, - 4 3500	000	500	5	60 500	000	6500	7000	7500	
Projects, Versions & Maps:	•	0.0	0.0	0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	000	0.0	0.0	0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Filter:	880	0.0	0.0	0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
M / A. Name Si	A 920	0.0	0.0	0.0	0.0 0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
D0790 Start of Injection 3	1000	0.0	0.0	0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
D09D4 Start of Injection 4 III 16		0.0	0.0	0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
D0C18 Start of Injection 5 🛛 🔳 16		0.0	0.0	0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
D1844 Start of Injection 1b 🔳 16		0.0	0.0	0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0	0.0	1.9	3.2	3.2	3.2	
D1A88 Start of Injection 2b 🔳 16		0.0	0.0	0.0	0.0 0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6	2.6	2.6	3.3	
D1CCC Start of Injection 3b 🔳 16		0.0	0.0	0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
D1F10 Start of Injection 4b 🔳 16		0.0	0.0	0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
D2154 Start of Injection 5b III 16		0.0	0.0	0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
D455C Lambda @ regein 16 D85F2 Injectors Opening Time 20		0.0	0.0	0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
DB5F2 Injectors Opening Time 20 DDB5E N75 - 1 regular on regen 11	~		0.0		0.0 0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
DDFE6 N75 - 2 regular 16																	
DE26E N75 - 3 transient on regen = 16																	
DE4B2 N75 - 4 transient = 16																	
DF88C Boost pressure @ Regen 🛛 🔳 16	6																
DFD14 Boost Pressure III 18																	
DFF9A Boost Limiter I 16																	
E019A Single Boost (SVBL) 1>																	
E1B3E EGR hysteresis - 25																	
E1BA4 EGR hysteresis25 E1C0A EGR hysteresis25																	
E1CDA EGR hysteresis25 E2E9A Inv drivers wish 88																	
E3DF0 SVFPL 1																	
E3F0A SVFPL 1																	
E40BC Pre Injection III 16																	
E44C8 Rail Pressure on regen 🛛 🔳 16	5																
E4990 Rail Pressure normal 🛛 🔳 16	5)																
E4D2A Rail Pressure Temp limiter = 8																	
E4DD8 Rail Pressure Limit Fct RPM 8	d																
Potential maps (172)	Text	2d/3d/ <															- F
ress F1 to receive help.	~						X 0 0	All CS ok - (Checksum	block 0 : ol	kay 🔊	No OLS-Mo	odule Cu	ursor: DDB5	E => 00000) (00000) ->	0 (0.00%), Width: 1

Regular N75 during DPF regeneration

😡 WinOLS - Opel Stage 1 🛙	Oyno Astra-H (Tuned Sta	ge 1), 3794	13, N75 - 2 re	gular						-									- 0 X
Project Edit Hardwa	are View Selection	Search N	liscellaneous	Window	?														_ <i>6</i> ×
🤻 🚨 🖨 🖻 📢		- B (5) /	≷. I	_ ▶ ⊓	- जाणा क	- Epror	n	8 №?											
								0.10											
11 Point 🚔 11 Point			F1 255 FF		~ %	🛦 ×1 0m	Örğ												
👫 🖄 🚿 🏪 🏣			A V																
	P 📲 🏠									angle(I									*
		stroke 1/min	5.0	7.5	.0.0	12.5	15.0	17.5	20.0	2.5	5.0	30.0	15.0	0.0	50.0	.0.0	55.0	70.0	
		1/min		7.5		12.5		17.5		2.5		50.0	4	0.0		50.0		/0.0	
Projects, Versions & Maps:	•	1000	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	
		1250	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 73.5	75.0 72.0	75.0 70.0	75.0 70.0	
Filter:) Off	1750	73.5	73.2	73.0	73.0	73.0	72.5	72.2	72.0	72.0	72.0	70.0	67.0	66.0	66.0	66.0	64.0	
M / A, Name	Si 🔺	2000	72.5	72.0	71.8	71.2	70.8	70.5	70.0	69.8	69.5	69.0	66.0	66.0	64.0	64.0	60.0	57.0	
D0790 Start of Injection 3		2250	70.5	70.2	70.0	69.7	69.3	69.0	68.7	68.4	68.1	67.4	66.0	64.0	61.0	58.0	57.0	53.0	
D09D4 Start of Injection 4		2500	69.3	68.9	68.6	68.4	67.9	67.6	67.1	66.5	65.7	65.7	64.0	60.0	56.0	53.0	53.0	51.5	
D0C18 Start of Injection 5		2750 3000	66.0 63.0	65.7 63.0	65.5 63.0	65.2 63.0	65.0 62.0	64.7 61.0	64.3 60.0	64.0 58.0	64.0 57.0	60.0 56.0	59.0 55.0	58.0 55.0	54.0 50.0	50.0 47.0	50.0 48.0	49.0 45.0	
D1844 Start of Injection 1		3250	59.0	59.0	58.0	58.0	57.0	57.0	56.0	55.0	54.0	51.0	50.0	50.0	49.0	46.0	43.9	43.9	
D1A88 Start of Injection 2	2b 🔳 16>	3500	60.0	60.0	57.0	57.0	56.0	55.0	54.0	53.0	52.0	50.0	49.0	49.0	48.0	46.0	43.9	43.9	
D1CCC Start of Injection 3	3b 🔳 16)	3750	59.0	59.0	58.0	57.0	56.0	55.0	53.0	51.0	50.0	49.0	49.0	48.5	46.0	43.9	43.9	43.9	
D1F10 Start of Injection 4	4b 🔳 16)	4000	59.0	59.0	58.0	57.0	57.0	56.0	54.0	53.0	51.0	49.0	48.0	48.0	47.0	44.0	44.0	44.0	
D2154 Start of Injection 5		4250	59.0	59.0	59.0	58.0	58.0	57.0	55.0	54.0	53.0	50.0	48.0	48.0	47.0	43.9	43.9	43.9	
D455C Lambda @ regein		4500	55.0	55.0	55.0	55.0	55.0	54.0	53.0	52.0	51.0	49.0	47.0	46.0	43.9	43.9	43.9	43.9	
DB5F2 Injectors Opening		5000	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	48.5	46.7	46.5	46.0	46.0	46.0	46.0	=
DDB5E N75 - 1 regular or		◀																	
DDFE6 N75 - 2 regular DE26E N75 - 3 transient (
DE26E N75 - 3 transient (DE4B2 N75 - 4 transient	on regen 📕 16) I 16)																		
DF88C Boost pressure @																			
DFD14 Boost Pressure	■ 16)																		
DFF9A Boost Limiter	= 16																		
E019A Single Boost (SVE																			
E1B3E EGR hysteresis	- 25																		
E1BA4 EGR hysteresis	25																		
E1C0A EGR hysteresis	25>																		
E2E9A Inv drivers wish	∎ 8×1																		
E3DF0 SVFPL	· 1×1 =																		
E3F0A SVFPL	- 1x1																		
E40BC Pre Injection	16																		
E44C8 Rail Pressure on r																			
E4990 Rail Pressure nor E4D2A Rail Pressure Ten																			
E4D2A Hail Pressure Limi																			
Potential maps (172)	ercernim • oxi	h																	Ψ
otomtar maps (172)		<u>Text</u>	2d/3d/ < [_	_	_	_	_	_				_	-	_	_	_	
Press F1 to receive help.									2 🚯 🖾	All CS ok -	Checksun	h block 0 : d	okay a⊽	No OLS-N	Aodule Cu	rsor: DE04	A => 00072	2 (00072) ->	0 (0.00%), Width: 16

Project Edit Hardware View Si ♥ ●	Image: Second secon		iscellaneous	Window	2														
		s 🖘 🖉			1														_ 8 3
11 Point 🚔 🛛 11 Point 🚔 🔛 🔣	Lowo Laund	a, a∋ …	4 🔹 🏚	≙ ▶ [F 🔽 P	▼ Epron	n	8 №											
	8	16 32 1	11 1855 FF	111 LOHI HILO	*- % 🛛	∆ ×1 0rg	019 019												
👫 🖟 🚿 🍢 🖬 🔳 🌆						_													
										angle(IÇ				-		_			
		stroke 1/min	5.0	7.5	10.0	12.5	.5.0	17.5	20.0 2	2.5	5.0	3 D.O	5.0 4	0.0	0.0 6	0.0	5.0	0.0	
Projects, Versions & Maps:	•	1000 1250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Filter:		1500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		1750 2000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
M / A. Name	51	2250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
D0790 Start of Injection 3 D09D4 Start of Injection 4	■ 16)	2500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	■ 16) ■ 16)	2750	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	■ 16×	3000 3250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
D1A88 Start of Injection 2b	16	3230	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	1.9	
D1CCC Start of Injection 3b	16	3750	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	2.9	2.9	
D1F10 Start of Injection 4b	16	4000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
D2154 Start of Injection 5b	16	4250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9	1.9	1.9	
D455C Lambda @ regein	■ 16)	4500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.9	0.9	0.9	
	20	5000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	= 16																		
	- 16																		
	16																		
	16/																		
	16																		
	16																		
E019A Single Boost (SVBL)	< 1x1																		
	- 25																		
	- 25																		
	- 25																		
	∎ 8×1																		
E3DF0 SVFPL	· 1×1 =																		
E3F0A SVFPL	 1×1 ■ 16> 																		
	 16) 16) 																		
	 16) 16) 																		
	- 8x6																		
E4DD8 Rail Pressure Limit Fct RPM	 8x1 																		
Potential maps (172)		Tout (2d/3d/ <																

Press F1 to receive help. 🖉 🐵 🗠 All CS ok - Checksum block 0 : okay 🛛 🕫 🖓 No OLS-Module [Cursor: DE04A => 00000 (00000) -> 0 (0.00%), Width: 16

Transition N75 during

😡 WinOLS - Opel Stage 1 Dyno Astra-H										-						_	_	_	_ 0 X
Project Edit Hardware View	Selection Selection	earch M	iscellaneous	Window	2														_ 8 ×
🕺 🎩 🎒 🗃 🖬 🖬 📢 🖣 🛄)				1 🕨 🕨 🗖	· V P	- Epror	n	8 №											
11 Point 🚔 11 Point 🚔 🔛 🛛	55 👪 👫	16 32	11 2355 FF	HILO +	~ % L	×1 0rg	019 019												
👬 🕷 🚿 🍢 🖬 🗐			×.																
	*	-		750		1250		1750		250	500 3	3000		000		000		7000	
Projects, Versions & Maps:	•	1000 1250	75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	75.0 75.0	
Filter:		1500	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	
M / A. Name	Si ^	1750 2000	73.5 72.5	73.2	73.0 71.8	73.0 71.2	73.0 70.8	72.5	72.2	72.0 69.8	72.0 69.5	72.0 69.0	70.0	68.2 64.0	66.7 64.0	63.0 60.0	59.0 59.0	57.0 57.0	
D0790 Start of Injection 3	= 16>	2250	70.5	70.2	70.0	69.7	69.3	69.0	68.7	68.4	68.1	67.4	66.0	62.0	60.0	57.2	56.0	55.0	
D09D4 Start of Injection 4	■ 16×	2500 2750	69.3 66.0	68.9 65.7	68.6 65.5	68.4 65.2	67.9 65.0	67.6 64.7	67.1 64.3	66.5 64.0	65.7 64.0	65.7 60.0	62.0 59.0	59.4 55.0	56.4 53.0	54.7 51.0	54.0 48.0	53.0 46.0	
D0C18 Start of Injection 5	■ 16>	2/50 3000	63.0	63.0	63.0	63.0	65.0	61.0	60.0	58.0	57.0	56.0	53.0	51.0	48.0	47.0	48.0	46.0	
D1844 Start of Injection 1b	a 16>	3250	59.0	59.0	58.0	58.0	57.0	57.0	56.0	55.0	54.0	49.0	48.0	49.0	47.0	46.0	43.0	42.7	
D1A88 Start of Injection 2b	■ 16»	3500	60.0	60.0	57.0	57.0	56.0	55.0	54.0	53.0	52.0	48.0	47.0	47.0	46.0	45.0	42.7	42.7	
D1CCC Start of Injection 3b D1F10 Start of Injection 4b	■ 16> ■ 16>	3750 4000	59.0 59.0	59.0 59.0	58.0 58.0	57.0 57.0	56.0 57.0	55.0 56.0	53.0 54.0	51.0 53.0	50.0 51.0	49.0 49.0	47.0	46.0	44.0 43.0	43.0 43.0	42.7 42.7	42.7 42.7	
D1F10 Start of Injection 40 D2154 Start of Injection 5b	■ 16× ■ 16×	4250	59.0	59.0	59.0	58.0	58.0	57.0	55.0	54.0	53.0	50.0	46.0	46.0	43.0	43.0	42.7	42.7	
D455C Lambda @ regein	16	4500	55.0	55.0	55.0	55.0	55.0	54.0	53.0	52.0	51.0	49.0	45.0	44.0	43.0	43.0	42.7	42.7	
DB5F2 Injectors Opening Time	20	5000	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	48.5	44.7	44.5	43.0	43.0	42.7	42.7	
DDB5E N75 - 1 regular on regen	= 16 🔺																		
DDFE6 N75 - 2 regular	= 16																		
DE26E N75 - 3 transient on regen	1 6																		
DE4B2 N75 - 4 transient DF88C Boost pressure @ Regen	16 16																		
DFD14 Boost Pressure @ Regen	1 6																		
DFF9A Boost Limiter	1 6																		
E019A Single Boost (SVBL)	1:1																		
E1B3E EGR hysteresis	25>																		
E1BA4 EGR hysteresis	25>																		
E1C0A EGR hysteresis																			
E2E9A Inv drivers wish E3DF0 SVFPL	■ 8×1 1×1 =																		
E3DF0 SVFPL E3F0A SVFPL	- 1x1																		
E3F04 SVPPL E40BC Pre Injection	■ 16×																		
E44C8 Rail Pressure on regen	1 6																		
E4990 Rail Pressure normal	= 16																		
E4D2A Rail Pressure Temp limiter	- 8x6																		
E4DD8 Rail Pressure Limit Fct RPM	 8x1 																		•
Potential maps (172)	-	<u>Iext</u>	2d/3d/ < 🛛									1							
Press F1 to receive help.	•	<u>Text</u>	2 <u>d/3d7</u> < [X () ()	All CS ok -			ikay 🔊	No OLS-M	lodule Cu	rsor: DE5A	2 => 00064	4 (00064) ->	● (0.00%), Width:

 WinOLS - Opel Stage 1 Dyno Astra-H (Tuned Stage 1), 379413, N75 - 4 transient
 □ Project Edit Hardware View Selegtion Search Miscellaneous Window ? _ 8 × | ? ****? 👬 🕷 🚿 | 🏪 | 🛤 🔳 (-,-)/% 2500 500 1000 1500 2000 3500 5000 6500 750 1250 1750 2250 3000 4000 6000 7000 1000 1250 1500 1750 2000 2250 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Projects, Versions & Maps: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 3.7 Filter: 3.7 0.0 0.0 0.0 Si... 0.0 2500 2750 3000 3250 3500 3750 4000 4250 4500 5000 0.0 2.4 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 0.0 16
 Distlic
 Nr.5 - 4. Invariant

 DFR0C
 Boot Pressure
 Regen

 DFD14
 Boot Pressure
 Regen

 DFD4
 Boot Univer
 Boot Pressure

 E019A
 Single Boot (SVEL)
 E1844

 E184
 EOR hysteesis
 E1844

 E1844
 EOR hysteesis
 E250F

 E30F0
 SVFPL
 E400C

 E400C
 Pre-Intection
 E400C

 E400C
 Pre-Intection
 E400A

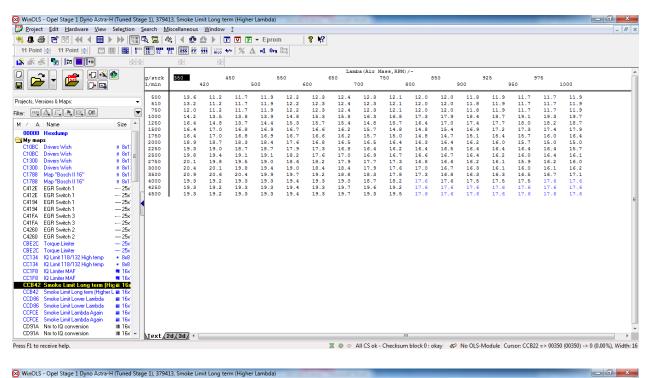
 E400A
 Rel Pressure on megn
 E400A

 E400A
 Rel Pressure from Inter
 E400A

 E400A
 Rel Pressure from Inter
 E400A

 E400A
 Rel Pressure Long Inter
 E400A

 Potential magne (T2)
 Potential magne (T2)
 E100A
 Potential maps (172) <u>Text/2d/3d/</u> < ____


Press F1 to receive help.

🕱 🐵 🜣 All CS ok - Checksum block 0 : okay 🛷 No OLS-Module Cursor: DE5A2 => 00000 (00000) -> 0 (0.00%), Width: 16

19. Lambda:

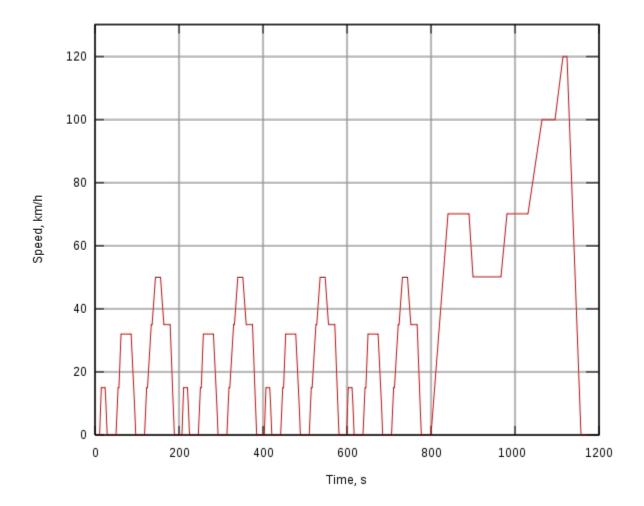
Pro tuner change very few values at high rpm and MAF, In fact he just copy the Sport Button lambda for high RPM and MAF. He left the sport button lambda unchanged.

My car don't have sport button so I choose to copy whole Sport button lambda map, over the regular lambda map. To avoid being too smoky I set the minimum AFR value to 14,5

Projec	t <u>E</u> dit <u>H</u> ardware <u>V</u> iew	Selection Selection	earch <u>M</u> i	scellaneous	Window	2														-	5 3
戦 🚨 é	i 🖻 🕅 📢 🖣 🛄 🕽	• • • •	रु 📃 🖉	2 🔹 💏 :	🗠 🕨 🗖	e 🔽 P	• Eprom		8 №												
11 Point	t 🚔 11 Point 🚔 🛛 🕅	88 888 8"	16 32 7	" 255 FF	111 LOH 4	~ % \Lambda	x1 Org 8	19													
in a china a c			<u> </u>	- (<u>ear</u>) ee			5														
				<u></u>						Lamb	a(Air Ma	ss.RPM)/	-								-
		₩.	g/strk	350		150	55		65	50	75	0	8	50		25		75			Ē
	Z ' 📂 📭		1/min		420	5	00	60	0	70	0	8	00	9	00	9	50	1	000		_
Projects, Ve	ersions & Maps:	-	500 510	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	A II R KK Off		750	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Filter:			1000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
M / A.	Name	Size ^	1250 1500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Hexdump		1750	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
🔁 My maj			2000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Drivers Wish	8x1: 0.41	2250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Drivers Wish Drivers Wish	8x1: 8x1:	2500 2750	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Drivers Wish	8x1:	3000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
		8x1:	3500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Map "Bosch II 16"	8x1	4000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	0.0	0.0	0.0	0.0	-0.2	-0.4		
	EGR Switch 1	25x	4250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	-0.5	-0.1	-0.1	-0.2	-0.5	-0.8		
	EGR Switch 1	25x	4500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.5	-1.8	-2.3	-2.3	-2.2	-1.5	-1.6		
		- 25x	(
	EGR Switch 1	- 25x	1																		
C41FA			1																		
	EGR Switch 3 EGR Switch 2	25x 25x																			
	EGR Switch 2	- 25x																			
CBE2C		- 25x																			
		- 25x																			
	IQ Limit 118/132 High temp	• 8x8																			
	IQ Limit 118/132 High temp	• 8x8																			
	IQ Limiter MAF	📕 16x																			
	IQ Limiter MAF	16x																			
	Smoke Limit Long term (Hi Smoke Limit Long term (Higher	ig = 16:																			
	Smoke Limit Long term (Higher Smoke Limit Lower Lambda	L = 16x																			
CCD86		= 16x																			
CCFCE		a 16x																			
		a 16x																			
CD91A	Nm to IQ conversion	■ 16x																			
CD91A	Nm to IQ conversion	III 16x' ≖	Iext 2	4 / 3d / →																	•
	receive help.		Trucks	-Yeek .															(00000) -> 0	(0.000()	

Project	Edit Hardware View	Selection S	earch M	iscellaneous	Windov	v ?														
	 🖻 🕅 ♦♦ ♦ 🔳)						- Epror	n	% №											
	↓ 11 Point (♣) []]						<u>∆</u> ×1 0rg													
			16 32 1					Orĝ												
à à	🍢 🏞 🔳 🐜	A A		×.	A. 															
<u> </u>	-	A								Lambda sp										
		11 C	-	3500		4500		5500		6500		500		500		9250		9750		
	📂 📭		-		4200		5000		6000	7	000	6	8000	9	000		9500		10000	
			500	13.6	11.2	11.7	11.9	12.2	12.3	12.4	12.3	12.1	12.0	12.0	11.8	11.9	11.7	11.7	11.9	
ects, Versio	ons & Maps:	-	510	13.2	11.2	11.7	11.9	12.2	12.3	12.4	12.3	12.1	12.0	12.0	11.8	11.9	11.7	11.7	11.9	
	Li P. KK Off		750	12.0	11.2	11.7	11.9	12.2	12.3	12.4	12.3	12.1	12.0	12.0	11.8	11.9	11.7	11.7	11.9	
			1000	13.5	13.5	13.8	14.1	14.8	15.3	15.8	16.3	16.8	17.3	17.9	18.4	18.7	19.1	19.3	19.7	
 A. 	Name	Size ^	1250 1500	15.1 15.0	14.3 16.0	13.7 16.3	14.1 16.4	15.3 16.0	15.7 15.5	15.4 16.4	15.6	16.0 15.8	16.4	17.0	17.4	17.7 18.0	18.0	18.2	18.7	
0000 H	lexdump		1750	13.4	14.2	14.6	14.9	15.2	15.4	15.4	15.2	15.0	14.8	14.7	15.1	16.2	16.3	16.3	16.5	
y maps			2000	18.9	18.7	18.3	18.4	17.6	16.8	16.5	16.5	16.4	16.3	16.4	16.2	16.0	15.7	15.0	15.0	
	Invers Wish	8x1: 8x1:	2250	19.3	19.0	18.7	18.7	17.9	17.3	16.8	16.4	16.2	16.4	16.5	16.4	16.4	16.4	16.4	15.7	
	rivers Wish	∎ 8x1: _⊟	2500	19.8	19.4	19.1	19.1	18.2	17.6	17.0	16.9	16.7	16.6	16.7	16.4	16.2	16.0	16.4	16.1	
	Drivers Wish	8x1:	2750	20.1	19.8	19.5	19.0	18.6	18.2	17.9	17.7	17.3	16.8	16.6	16.2	16.1	15.9	16.2	16.0	
	Drivers Wish	8x1:	3000	20.4	20.1	19.8	19.4	19.0	18.4	18.4	17.9	17.6	17.0	16.7	16.3	16.1	16.0	16.1	16.2	
	1ap "Bosch II 16"	8x1: 8x1:	3500	20.9	20.6	20.4	19.9	19.7	19.2	18.8	18.3	17.8	17.3	16.8	16.3	16.3	16.5	16.7	17.1	
	1ap "Bosch II 16"	 8x1: 	4000	19.3	19.2	19.3	19.3	19.4	19.3	19.0	18.7	18.2	17.6	17.6	17.5	17.5	17.5	17.6		
	GR Switch 1	25x	4250	19.3	19.2	19.3	19.3	19.4	19.3	19.7	19.6	19.2	17.6	17.6	17.6	17.6	17.6	17.6		
	GR Switch 1	25x	4500	19.3	19.2	19.3	19.3	19.4	19.3	19.7	19.3	19.5	17.6	17.6	17.6	17.6	17.6	17.6	17.6	
	GR Switch 1	— 25×																		
	GR Switch 1	-25×																		
	GR Switch 3	25x																		
	GR Switch 3	— 25x																		
	GR Switch 2	— 25×																		
	GR Switch 2	— 25x																		
	orque Limiter	- 25x																		
	orque Limiter	- 25x																		
	Limit 118/132 High temp	• 8x8																		
	Limit 118/132 High temp	• 8x8																		
	2 Limiter MAF 3 Limiter MAF	 16x 16x 																		
	moke Limit Long term (Higher moke Limit Long term (Higher																			
	moke Limit Long term (Higner imoke Limit Lower Lambda	■ 16x																		
	moke Limit Lower Lambda	= 16x																		
	moke Limit Lambda Again	= 16x																		
	moke Limit Lambda Again	= 16x																		
	Moke Limit Lambda Again 1ap "Bosch II 16"	■ 16x																		
10212 M 1091A N		= 10X																		

Press F1 to receive help.


🕱 🐵 🜣 All CS ok - Checksum block 0 : okay 🛛 🐼 No OLS-Module Cursor: CD1F2 => 03500 (03500) -> 0 (0.00%), Width: 16

GLOSSARY

IQ = Injection Quantity SOI = Start Of Injection = SOE = Start Of Energizing EOI = End Of Injection CRS = Common Rail System Mg = milligrams Str = Engine Stroke °CR = Degree Crankshaft Rotation °C = Degree Celcius rpm = Engine revolutions per minute BTDC = Before Top Dead Center ATDC = After Top Dead Center Nm = Newton metres (Torque) Mbar = Millibar (pressure) BMEP = break mean effective pressure CA = crank angle CO = carbon monoxide ECM = engine control module EGR = exhaust gas recirculation MAF = mass air flow sensor HCCI = homogeneous charge compression ignition NOx = oxides of nitrogen PM = particulate matter SI = spark ignition TDC = top dead center THC = total hydrocabon VGT = variable geometry turbine WGT = Waste gate turbine

- 1. All 0 maps are ignored
- 2. For everything higher than max, last known value is used.
- 3. Transient VNT maps are used when pedal change is more than 20% in one second.
- 4. VNT maps are only used in open loop mode, when closed loop kicks in PID controller takes over. If actual boost is too far from requested when PID takes over, you get boost oscillation, because PID control is slow.
- 5. Lambda maps limit IQ in relation to air mass mg/hub (hub means stroke), to keep the intended AFR.
- 6. 1ltr diesel is about 0.85 kg i.e 100mm3 are 86mg
- 7. According to the CRC Handbook of Chemistry and Physics, the density of dry air at 20 degrees C at 760 mm of mercury (one atmosphere of pressure) is 1.204 milligrams per cubic centimeter. 1 liter = 1000 mL = 1000 cm³; (1.204 mg / cm³) * 1000 cm³ = 1204 mg = 1.204 grams
- 8. Lambda factor for EDC16 is 0.0145 as per Bosch EDC16 manual
- 9. You could increase rail pressure up to 1750 bar, 1,9DTH/CDTI engine has 1800-bar rail sensor.
- 10. GT1749V, can handle a max boost of around 2650mbar
- 11. Make torque limiter linear. The horse power comes in high RPM. If you increase suddenly the torque the clutch and the flywheel will die.
- 12. .. most work in good tuning goes to proper VNT tuning so your boost does not oscillate. There are 4 VNT maps in this ecu, 2 normal and 2 on regen. Normally you need to LOWER them on tuned car by 2 or 3%. You need logs for exact match as every car is little different.
- 13. Both of the boost readings they are in mBar and Absolute
- 14. 1.18 *wheel power=flywheel power; Usually RWD-lose 10%; FWD-lose 15%; AWD-lose 20%; Auto-lose 5%
- 15. And the easy way to adjust the AFR without wideband AFR sensor is to observe the sooth from the exhaust. When it starts "smoking" you need more air. Or more advance.
- 16. PD duration calibration Make an interpolation or add approximately 5 degrees for each 5mg...
- 17. If the engine is running in low load you'll get white/grey smoke from late injection. Because the cylinder and exhaust gas is too cold to complete the combustion.
- 18. Since O2 has a moleculare weight of 32, and air 29, on a mass/mass basis, this is 0.21 x 32/29 = 0.232 kg O2/ kg air. That will be independent of temperature and pressure.
- 19. **Petrol gasoline, or benzin** is composed of a mixture of 2,2,4-trimethylpentane (an isomer of octane C8H18 [octane rating 100]) and n-heptane (C7H16 [octane rating 0]). Example of octane rating, petrol with the same knocking characteristics as a mixture of 95% iso-octane and 5% heptane would have an octane rating of 95.
- 20. **Diesel** is composed of about 75% saturated hydrocarbons (primarily paraffins including n, iso, and cycloparaffins), and 25% aromatic hydrocarbons (including naphthalenes and alkylbenzenes). The average chemical formula for common diesel fuel is C12H23, ranging approximately from C10H20 to C15H28.

Fuel	Combustion formula	Density kg/l (lb/US gal)	CO2 kg/l (lb/US gal) emissiones
Petrol gasoline	2 C8H18 + 25 O2> 16 CO2 + 18 H2O + 2636 kcal	0.7197 kg/l (6.073 lb/gal)	2.3035 kg/l (19.24 lb/US gal)
Diesel	4 C12H23 + 71 O2> 48 CO2 + 46 H2O + energy	0.832 kg/l (6.943 lb/gal)	2.6256 kg/l (21.91 lb/US gal)
Biodiesel C19H34O2	C19H34O2 + (53/2) O2> 19 CO2 + 17 H2O + energy	0.889 kg/l (7.42 lb/gal)	2.839 kg/l (23.69 lb/US gal)
Biodiesel C20H40O2	C20H40O2 + 29 O2> 20 CO2 + 20 H20 + energy	0.884 kg/l (7.38 lb/gal)	2.816 kg/l (23.5 lb/US gal)

22. Fuel needed to reach torque target

180 hp @ 3500rpm (0.38 lb hp hr)

0.38 lb hp hr = 0.006333' lb hp min 180hp * 0.00633 = 1.14 lb min fuel 1.14 * 1000000 / 2.204 = 517,241 mg 517,241 / **4 cylinder** / (3500 rpm / 2 strokes) = **73.89 mg/stroke** 180hp * 5252 / 3500 rpm = 270 lb ft 270 lb ft = 73.89mg/str

Lets see how much fuel the same torque at different rpm requires.... 270 lb.ft * 2000rpm / 5252 = 102.818hp @ 2000rpm

102.818hp @ 2000rpm (0.38 lb hp hr)

102.818hp * 0.00633 = 0.65118 lb min fuel 0.65118 * 1000000 / 2.204 = 295,454 mg 295,454 / **4 cylinder** / (2000 rpm / 2 strokes) = **73.86 mg/stroke**

Hence if the brake specific fuel consumption remains constant.. ...mg/str is proportional to torque.

23. Density of air ρ vs. temperature °C

°C ρ in kg/m³ -10 1.342 .- 5 1.317 ...0 1.292 .+ 5 1.269 +10 1.247 +15 1.225 +20 1.204 +25 1.184 +30 1.165

Air at 0 degrees Celsius has a density of $1.292 \text{ kg/m}^3 = 1.292 \text{ g/L} = 0.001292 \text{ kg/dm}^3 = 0.00001292 \text{ kg/L} = 0.00001292 \text{ g/cm}^3 = 0.00001292 \text{ g/mL}.$

24. I mean that to help with NOX gas reduction in cruise the manufacturers lease the SOI retarded but allow a small amount more advance to help with acceleration. As rightly said the dynamic advances up during acceleration because normal SOI map is retarded from optimum to reduce NOX gas. But they know that its retarded state is not good enough for transient or acceleration conditions.

Review

Had a good look at the file and I have to say it is way better than many of the "pro" tunes I have seen posted on the forums or read from actual tuned cars. I would have done it a bit different, don't know if better, but different 😉

What I like about the tune is that there are none nonsense adjustments done - the guy had a keep it clean and simple approach. The things that caught my attention are not stupid, only debatable. Many of the tunes I have seen have stupid changes, which you can't explain only by tuning approach. I think we have to agree that there are many tuning approaches and many different desirable results.

For instance you may want to squeeze every power there is or you may wish to play it safe. I personally don't like very aggressive torque limiters from low rpm, because in my opinion it is unhealthy for the clutch and for the dual mass flywheel. So I don't increase the torque figure by much in my mods, I tend to increase the top end of the rpm range more, to get more horse power. While other tuners simply say - replace the clutch and dmf if it starts to slip/vibrate and if the oem clutch isn't strong enough - replace it with something else.

The other point is what the customer expects. If you manage to explain him, that a lower torque increase will be better for his cars it is fine. But he may compare your tune with a harder tune and not be happy with the results, not thinking about the car. I have also had requests for a very strong tune, for a cars with 450 km on the odometer. As for driver wish maps - you can increase only the 100% end and use the extra power only when needed, you can increase the lower end - the car will feel more lively, but should produce higher fuel consumption. You can decrease the lower end for economy, BUT... I have had customer, that say: "I never use more than 70 percent of accelerator, because it surges the engine" and suddenly with the giving it max at 100% approach I am the worst tuner in the world because the car goes exactly the same. After a few similar experiences I increase the DW at almost the whole range by some percent, just for the car to "feel" more alive. I have done experiments with lowering the DW on the lower part - customer said that the car was very lazy, he pressed the pedal too much and fuel consumption increased. So it is not always the way you intend things to happen.

As for the mod itself, things I would do different (again, don't know if better):

- 1. Increase DW by 5% from the start.
- 2. Increase TL less for 1750-2750 rpm and a small bit more at the top range. (20% in nm gives a bit more % in IQ)
- 3. Decrease the maf tables a bit more from lower maf readings (they are low already).

4. Change the SOI by a degree on the whole table and 2-3 degrees after rescaling for the new IQ. (This is a sensitive topic, many opinions here). Leaving it stock is a good idea for a safe remap 😉

- 5. Wouldn't increase requested turbo pressure so much at low rpm it may spike because of that from my experience.
- 6. EGR another thing of debate. I would turn it off just because it gives too much trouble by clogging the intake system.

Maybe the tuner wanted extra money for that or believe the repair when broken approach 😂

Things that seem wrong:

- 1. Locked out on some IQ limiters. Some IQ limiter are lower than the main TL, can't find a logical explanation for this one.
- 2. Boost increase at lower IQ and no rescaling. From my experience lowering boost at lower IQ , increase economy.

As for rail pressure - I doubt that he did now know the SVFP limiters. I sometimes increase the rail pressure by percentage

and leave it a bit higher than the limiter. The requested fuel pressure will be set at the SVFP value. Maximum rail pressure increase is a sensitive thing and usually gives trouble by overshooting or undershooting. I touch it only on the cars that I have or I know it works flawlessly. I remember tuning a 1.9 JTD Alfa, touched the SVFP limiters, and after giving full load car went into limp mode with a dtc of overshooting the fuel pressure. I believe the regulator control map needs adjusting, but it is a lot easier to leave it stock than to play and get it 100% right. You could develop a 100% perfect tune on a dyno, doing a lot of tests and runs, but the car would become golden then 😜

As for DW at 5000 rpm - it makes no difference at all, because TL is lower.

Overall the file is not bad and not perfect in my opinion (which is usually wrong Θ)

Conclusion: Thanks to everybody!